- Commit
- d89fdc9c1c66a64e5dff3b79d344fdbc0683c97d
- Parent
- d485955b90bfe5f191dff4cc958d34fe18e08cd4
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Edited some TODO items
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Edited some TODO items
1 file changed, 2 insertions, 2 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/mathieu.tex | 4 | 2 | 2 |
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -60,7 +60,7 @@ % TODO: Add an example of a module wich is NOT a weight module -% TODOO: Prove this? +% TODOO: Prove this? Most likely not! \begin{proposition}\label{thm:centralizer-multiplicity} Let \(V\) be a completely reducible weight \(\mathfrak{g}\)-module. Then \(V_\lambda\) is a semisimple @@ -120,7 +120,7 @@ which is \emph{not} parabolic induced. \end{definition} -% TODOO: w should be an element of the subgroup W(V) of W. Fix this! +% TODOOO: w should be an element of the subgroup W(V) of W. Fix this! % TODO: Remark on the fact that any simple weight p-mod is a (p/u)-mod, so that % the notation of a cuspidal p-mod is well definited % TODO: Define the conjugation of a p-mod by an element of the Weil group