- Commit
- d8e462db17800b89cfa91ab7ead6d424a6db2b34
- Parent
- da7f47c08d88723367c2d134a5ca3deab6ac7561
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed an example
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed an example
1 file changed, 15 insertions, 13 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/introduction.tex | 28 | 15 | 13 |
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -139,7 +139,7 @@ this last construction. \] \end{example} -\begin{example} +\begin{example}\label{ex:sl2-basis} The elements \begin{align*} e & = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} & @@ -399,18 +399,20 @@ Other interesting classes of Lie algebras are the so called \emph{simple} and \begin{example} The Lie algebra \(\mathfrak{sl}_2(K)\). To see this, notice that any ideal - \(\mathfrak{a} \normal \mathfrak{sl}_2(K)\) must be stable under the adjoint - action of \(h\). But the operator \(\operatorname{ad}(h)\) is diagonalizable, - with eigenvalues \(0\) and \(\pm 2\). Hence \(\mathfrak{a}\) must be spanned - by some of the eigenvectors \(e, f, h\) of \(\operatorname{ad}(h)\). If \(h - \in \mathfrak{a}\), then \([e, h] = - 2 e \in \mathfrak{a}\) and \([f, h] = 2 - f \in \mathfrak{a}\), so \(\mathfrak{a} = \mathfrak{sl}_2(K)\). If \(e \in - \mathfrak{a}\) then \([f, e] = - h \in \mathfrak{a}\), so again - \(\mathfrak{a} = \mathfrak{sl}_2(K)\). Similarly, if \(f \in \mathfrak{a}\) - then \([e, f] = h \in \mathfrak{a}\) and \(\mathfrak{a} = - \mathfrak{sl}_2(K)\). More generally, the Lie algebra \(\mathfrak{sl}_n(K)\) - is simple for each \(n > 0\) -- see the section of \cite[ch. 6]{kirillov} on - invariant bilinear forms and the semisimplicity of classical Lie algebras. + \(\mathfrak{a} \normal \mathfrak{sl}_2(K)\) must be stable under the operator + \(\operatorname{ad}(h) : \mathfrak{sl}_2(K) \to \mathfrak{sl}_2(K)\) given by + \(\operatorname{ad}(h) X = [h, X]\). But example~\ref{ex:sl2-basis} implies + \(\operatorname{ad}(h)\) is diagonalizable, with eigenvalues \(0\) and \(\pm + 2\). Hence \(\mathfrak{a}\) must be spanned by some of the eigenvectors \(e, + f, h\) of \(\operatorname{ad}(h)\). If \(h \in \mathfrak{a}\), then \([e, h] + = - 2 e \in \mathfrak{a}\) and \([f, h] = 2 f \in \mathfrak{a}\), so + \(\mathfrak{a} = \mathfrak{sl}_2(K)\). If \(e \in \mathfrak{a}\) then \([f, + e] = - h \in \mathfrak{a}\), so again \(\mathfrak{a} = \mathfrak{sl}_2(K)\). + Similarly, if \(f \in \mathfrak{a}\) then \([e, f] = h \in \mathfrak{a}\) and + \(\mathfrak{a} = \mathfrak{sl}_2(K)\). More generally, the Lie algebra + \(\mathfrak{sl}_n(K)\) is simple for each \(n > 0\) -- see the section of + \cite[ch. 6]{kirillov} on invariant bilinear forms and the semisimplicity of + classical Lie algebras. \end{example} \begin{definition}\label{thm:sesimple-algebra}