- Commit
- 66b1395664fc31222820eeb52776df924ae950a1
- Parent
- 9e76324b67a948e1d1b2c2a963e778db205c5aaa
- Author
- Pablo <pablo-pie@riseup.net>
- Date
Fixed some TODOs
My M2 Memoire on mapping class groups & their representations
Fixed some TODOs
3 files changed, 7 insertions, 9 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/introduction.tex | 1 | 0 | 1 |
Modified | sections/presentation.tex | 14 | 7 | 7 |
Modified | sections/representations.tex | 1 | 0 | 1 |
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -294,7 +294,6 @@ The symplectic representation already allows us to compute some important examples of mapping class groups, namely that of the torus \(\mathbb{T}^2 = S_1\) and the once-punctured torus \(S_{1, 1}\). -% TODO: Draw a diagram? \begin{example}[Alexander trick]\label{ex:alexander-trick} The group \(\Homeo^+(\mathbb{D}^2, \mathbb{S}^1)\) of homeomorphisms of the unit disk \(\mathbb{D}^2 \subset \mathbb{Z}\) is contractible. In particular,
diff --git a/sections/presentation.tex b/sections/presentation.tex @@ -114,18 +114,18 @@ strands. In his seminal paper on braid groups, Artin \cite{artin} gave the following finite presentation of \(B_n\). -% TODO: Align this a little better? \begin{theorem}[Artin] \[ + \arraycolsep=1.2pt B_n = \left\langle \sigma_1, \ldots, \sigma_{n - 1} : - \begin{aligned} - \sigma_i \sigma_{i+1} \sigma_i & = \sigma_{i+1} \sigma_i \sigma_{i+1} - \ \text{for all} \ i, \\ - \sigma_i \sigma_j & = \sigma_j \sigma_i - \ \text{for} \ j \ne i + 1 \ \text{and} \ j \ne i - 1 - \end{aligned} + \begin{array}{rll} + \sigma_i \sigma_{i+1} \sigma_i & = \sigma_{i+1} \sigma_i \sigma_{i+1} & + \quad \text{for all} \ i, \\ + \sigma_i \sigma_j & = \sigma_j \sigma_i & + \quad \text{for} \ j \ne i + 1 \ \text{and} \ j \ne i - 1 + \end{array} \right\rangle. \] \end{theorem}
diff --git a/sections/representations.tex b/sections/representations.tex @@ -286,7 +286,6 @@ representations. \label{fig:korkmaz-proof-subsurface} \end{figure} - % TODO: Add more comments on the injectivity of this map? We claim that it suffices to find a \(m\)-dimensional \(\Mod(R)\)-invariant\footnote{Here we view $\Mod(R)$ as a subgroup of $\Mod(S_g^p)$ via the inclusion homomorphism $\Mod(R) \to \Mod(S_g^p)$ from