- Commit
- 73ae3808ad8e75b7f57f9b674a59bafc358095a1
- Parent
- 63449610f5a478d808f080b2c710b7ce7d7ec22e
- Author
- Pablo <pablo-pie@riseup.net>
- Date
Removed unnecessary whitespace
My M2 Memoire on mapping class groups & their representations
Removed unnecessary whitespace
4 files changed, 12 insertions, 12 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/introduction.tex | 4 | 2 | 2 |
Modified | sections/presentation.tex | 4 | 2 | 2 |
Modified | sections/representations.tex | 12 | 6 | 6 |
Modified | sections/twists.tex | 4 | 2 | 2 |
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -254,7 +254,7 @@ Here we collect a few fundamental examples of linear representations of \end{observation} Now by choosing \(k = 1\) we obtain the so called \emph{symplectic -representation.} +representation.} \begin{observation} Recall \(H_1(\Sigma_g, \mathbb{Z}) \cong \mathbb{Z}^{2g}\), with standard basis @@ -431,7 +431,7 @@ Another fundamental class of examples of representations are the so called & = \mathcal{F}(\Sigma) \otimes \mathcal{F}(\Sigma') & \mathcal{F}([W] \otimes [W']) & = \mathcal{F}([W]) \otimes \mathcal{F}([W']), - \end{align*} + \end{align*} where \(\Vect\) denotes the category of finite-dimensional complex vector spaces. \end{definition}
diff --git a/sections/presentation.tex b/sections/presentation.tex @@ -353,7 +353,7 @@ to obtain other relations. Since \(\iota\) has \(2g + 2\) fixed points in If \(g \ge 2\) then we have an exact sequence \begin{center} \begin{tikzcd} - 1 \rar + 1 \rar & \langle [\iota] \rangle \rar & C_{\Mod(\Sigma_g)}([\iota]) \rar & \Mod(\Sigma_{0, 2g + 2}) \rar @@ -457,7 +457,7 @@ explained in terms of the geometry of curves in \(\Sigma_g\). \end{align*} \item The hyperelliptic relation \([a_{2g} \cdots a_1 a_1 \cdots a_{2g}, d] - = 1\), where \(d = n_g\) for \(n_1 = a_1\), \(n_2 = b_0\) and + = 1\), where \(d = n_g\) for \(n_1 = a_1\), \(n_2 = b_0\) and \begin{align*} n_{i + 2} & = w_i n_i w_i^{-1} \\ w_i & = (a_{2i + 4} a_{2i + 3} a_{2i + 2} n_{i + 1})
diff --git a/sections/representations.tex b/sections/representations.tex @@ -128,7 +128,7 @@ by induction on \(g\) and tedious case analysis. We begin by the base case \(g some Abelian subgroup of \(\GL_n(\mathbb{C})\). \begin{enumerate}[leftmargin=1.9cm] - \item[\bfseries\color{highlight}(1) \& (4)] + \item[\bfseries\color{highlight}(1) \& (4)] By the change of coordinates principle, both \(L_{\alpha_1}\) and \(L_{\beta_1}\) are conjugate to \(L_{\alpha_2} = \lambda\). But the only matrix conjugate to \(\lambda\) is \(\lambda\) itself. Hence @@ -143,7 +143,7 @@ by induction on \(g\) and tedious case analysis. We begin by the base case \(g and \(L_{\beta_1}\) lie inside the subgroup of diagonal matrices -- an Abelian subgroup of \(\GL_n(\mathbb{C})\). - \item[\bfseries\color{highlight}(3) \& (6)] + \item[\bfseries\color{highlight}(3) \& (6)] As before, it follows from the disjointness relations that \(E_{\alpha_2 = \lambda} = \ker (L_{\alpha_2} - \lambda)\) and \(\ker (L_{\alpha_2} - \lambda)^2\) are invariant under both \(L_{\alpha_1}\) and @@ -382,14 +382,14 @@ representations. individually. \begin{enumerate} - \item[\bfseries\color{highlight}(1)] + \item[\bfseries\color{highlight}(1)] Here we use the change of coordinates principle: each \(L_{\alpha_i}, L_{\beta_i}, L_{\gamma_i}, L_{\eta_i}\) is conjugate to \(L_{\alpha_g} = \lambda\), so all Lickorish generators of \(\Mod(\Sigma_g^p)\) act on \(\mathbb{C}^n\) as scalar multiplication by \(\lambda\) as well. Hence \(\rho(\Mod(\Sigma_g^p)) = \langle \lambda \rangle\) is Abelian. - \item[\bfseries\color{highlight}(2)] + \item[\bfseries\color{highlight}(2)] In this case, \(W = \ker (L_{\alpha_g} - \lambda)^2\) is a \(2\)-dimensional \(\Mod(\Sigma)\)-invariant subspace. \end{enumerate} @@ -494,7 +494,7 @@ main lemma}. Namely\dots \begin{align*} B_3^n & \to \GL_m(\mathbb{C}) \\ a_i - & \mapsto + & \mapsto \left( \begin{array}{c|c|c} 1_{2(i-1)} & 0 & 0 \\ \hline @@ -503,7 +503,7 @@ main lemma}. Namely\dots \end{array} \right) \\ b_i - & \mapsto + & \mapsto \left( \begin{array}{c|c|c} 1_{2(i-1)} & 0 & 0 \\ \hline
diff --git a/sections/twists.tex b/sections/twists.tex @@ -23,7 +23,7 @@ classes fixing such arcs and curves. Formally, this translates to\dots \item \([\alpha_i] \ne [\alpha_j]\) for \(i \ne j\). \item Each pair \((\alpha_i, \alpha_j)\) crosses at most once. \item Given distinct \(i, j, k\), at least one of \(\alpha_i \cap \alpha_j, - \alpha_i \cap \alpha_k, \alpha_j \cap \alpha_k\) is empty. + \alpha_i \cap \alpha_k, \alpha_j \cap \alpha_k\) is empty. \item The surface obtained by cutting \(\Sigma\) across the \(\alpha_i\) is a disjoint union of disks and once-punctured disks. \end{enumerate} @@ -209,7 +209,7 @@ too. is not hard to check that \(\tau_\beta \tau_\alpha \cdot [\beta] = [\alpha]\). From Observation~\ref{ex:conjugate-twists} we then get \((\tau_\alpha \tau_\beta) \tau_\alpha (\tau_\alpha \tau_\beta)^{-1} = - \tau_\beta\), from which follows the \emph{braid relation} + \tau_\beta\), from which follows the \emph{braid relation} \[ \tau_\alpha \tau_\beta \tau_\alpha = \tau_\beta \tau_\alpha \tau_\beta. \]