memoire-m2

My M2 Memoire on mapping class groups & their representations

Commit
f2f8bce83abfa9fc68696034663a548bf2da3503
Parent
7057b04bf6c633bf7df7bc5b26d516eb1fff98cb
Author
Pablo <pablo-pie@riseup.net>
Date

Converted the images in chapter 4 into proper figures

Diffstats

1 files changed, 16 insertions, 8 deletions

Status Name Changes Insertions Deletions
Modified sections/representations.tex 2 files changed 16 8
diff --git a/sections/representations.tex b/sections/representations.tex
@@ -37,10 +37,14 @@ by induction on \(g\) and tedious case analysis. We begin by the base case \(g
   denote by \(E_{\alpha = \lambda} = \{ v \in \mathbb{C}^n : L_\alpha v =
   \lambda v \}\) its eigenspaces. Let \(\alpha_1, \alpha_2, \mu_1, \mu_2,
   \gamma, \eta_1, \ldots, \eta_{b - 1} \subset S_2^b\) be the curves of the
-  Lickorish generators from Theorem~\ref{thm:lickorish-gens}.
-  \begin{center}
-    \includegraphics[width=.25\linewidth]{images/lickorish-gens-gen-2.eps}
-  \end{center}
+  Lickorish generators from Theorem~\ref{thm:lickorish-gens}, as shown in
+  Figure~\ref{fig:lickorish-gens-genus-2}.
+  \begin{figure}
+    \centering
+    \includegraphics[width=.2\linewidth]{images/lickorish-gens-gen-2.eps}
+    \caption{The Lickorish generators for $g = 2$.}
+    \label{fig:lickorish-gens-genus-2}
+  \end{figure}
 
   If \(n = 1\) then \(\rho(\Mod(S_2^b)) \subset \GL_1(\mathbb{C}) =
   \mathbb{C}^\times\) is Abelian. Now if \(n = 2\) or \(3\), by
@@ -243,10 +247,14 @@ representations.
   Theorem~\ref{thm:lickorish-gens}. Once again, let \(L_\alpha =
   \rho(\tau_\alpha)\) and denote by \(E_{\alpha = \lambda}\) the eigenspace of
   \(L_\alpha\) associated to \(\lambda \in \mathbb{C}\). Let \(R \cong S_{g -
-  1}^1\) be the closed subsurface highlighted in the following picture.
-  \begin{center}
-    \includegraphics[width=.5\linewidth]{images/lickorish-gens-korkmaz-proof.eps}
-  \end{center}
+  1}^1\) be the closed subsurface highlighted in
+  Figure~\ref{fig:korkmaz-proof-subsurface}.
+  \begin{figure}[ht]
+    \centering
+    \includegraphics[width=.35\linewidth]{images/lickorish-gens-korkmaz-proof.eps}
+    \caption{The subsurface $R \subset S_g^b$.}
+    \label{fig:korkmaz-proof-subsurface}
+  \end{figure}
 
   % TODO: Add more comments on the injectivity of this map?
   We claim that it suffices to find a \(m\)-dimensional