- Commit
- edca2bdcb23350ee29d97ce44bb110ca653bdbfb
- Parent
- 0c28dc75738c5d23a2b89c98e9328abe07de34f1
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed typo in the filenames
Solututions to the Natural Number Game
Fixed typo in the filenames
4 files changed, 204 insertions, 204 deletions
Status | Name | Changes | Insertions | Deletions |
Deleted | advanced-preposition.lean | 1 file changed | 0 | 136 |
Added | advanced-proposition.lean | 1 file changed | 136 | 0 |
Deleted | preposition.lean | 1 file changed | 0 | 68 |
Added | proposition.lean | 1 file changed | 68 | 0 |
diff --git a/advanced-preposition.lean /dev/null @@ -1,136 +0,0 @@ -example (P Q : Prop) (p : P) (q : Q) : P ∧ Q := -begin - split, - exact p, - exact q, -end - -lemma and_symm (P Q : Prop) : P ∧ Q → Q ∧ P := -begin - intro h, - cases h with p q, - split, - exact q, - exact p, -end - -lemma and_trans (P Q R : Prop) : P ∧ Q → Q ∧ R → P ∧ R := -begin - intro h1, - cases h1 with p _, - intro h2, - cases h2 with _ r, - split, - exact p, - exact r, -end - -lemma iff_trans (P Q R : Prop) : (P ↔ Q) → (Q ↔ R) → (P ↔ R) := -begin - intro p_iff_q, - cases p_iff_q with hpq hqp, - intro q_iff_r, - cases q_iff_r with hqr hrq, - split, - intro p, - apply hqr, - apply hpq, - exact p, - intro r, - apply hqp, - apply hrq, - exact r, -end - -lemma iff_trans (P Q R : Prop) : (P ↔ Q) → (Q ↔ R) → (P ↔ R) := -begin - intro p_iff_q, - cases p_iff_q with hpq hqp, - intro q_iff_r, - cases q_iff_r with hqr hrq, - split, - intro p, - apply hqr, - apply hpq, - exact p, - intro r, - apply hqp, - apply hrq, - exact r, -end - -example (P Q : Prop) : Q → (P ∨ Q) := - begin - intro q, - right, - exact q, -end - -lemma or_symm (P Q : Prop) : P ∨ Q → Q ∨ P := -begin - intro h, - cases h with p q, - right, - exact p, - left, - exact q, -end - -lemma and_or_distrib_left (P Q R : Prop) : P ∧ (Q ∨ R) ↔ (P ∧ Q) ∨ (P ∧ R) := -begin - split, - intro h, - have p := h.1, - cases h.2 with q r, - left, - split, - exact p, - exact q, - right, - split, - exact p, - exact r, - intro h, - cases h with p_and_q p_and_r, - cases p_and_q with p q, - split, - exact p, - left, - exact q, - cases p_and_r with p r, - split, - exact p, - right, - exact r, -end - -lemma contra (P Q : Prop) : (P ∧ ¬ P) → Q := -begin - intro h, - rw not_iff_imp_false at h, - exfalso, - apply h.2, - exact h.1, -end - -lemma contrapositive2 (P Q : Prop) : (¬ Q → ¬ P) → (P → Q) := -begin - by_cases p : P; by_cases q : Q, - intros _ _, - exact q, - intro h, - have not_p := h q, - exfalso, - rw not_iff_imp_false at not_p, - apply not_p, - exact p, - intros _ _, - exact q, - intros h p, - have not_p := h q, - rw not_iff_imp_false at not_p, - exfalso, - apply not_p, - exact p, -end -
diff --git /dev/null b/advanced-proposition.lean @@ -0,0 +1,136 @@ +example (P Q : Prop) (p : P) (q : Q) : P ∧ Q := +begin + split, + exact p, + exact q, +end + +lemma and_symm (P Q : Prop) : P ∧ Q → Q ∧ P := +begin + intro h, + cases h with p q, + split, + exact q, + exact p, +end + +lemma and_trans (P Q R : Prop) : P ∧ Q → Q ∧ R → P ∧ R := +begin + intro h1, + cases h1 with p _, + intro h2, + cases h2 with _ r, + split, + exact p, + exact r, +end + +lemma iff_trans (P Q R : Prop) : (P ↔ Q) → (Q ↔ R) → (P ↔ R) := +begin + intro p_iff_q, + cases p_iff_q with hpq hqp, + intro q_iff_r, + cases q_iff_r with hqr hrq, + split, + intro p, + apply hqr, + apply hpq, + exact p, + intro r, + apply hqp, + apply hrq, + exact r, +end + +lemma iff_trans (P Q R : Prop) : (P ↔ Q) → (Q ↔ R) → (P ↔ R) := +begin + intro p_iff_q, + cases p_iff_q with hpq hqp, + intro q_iff_r, + cases q_iff_r with hqr hrq, + split, + intro p, + apply hqr, + apply hpq, + exact p, + intro r, + apply hqp, + apply hrq, + exact r, +end + +example (P Q : Prop) : Q → (P ∨ Q) := + begin + intro q, + right, + exact q, +end + +lemma or_symm (P Q : Prop) : P ∨ Q → Q ∨ P := +begin + intro h, + cases h with p q, + right, + exact p, + left, + exact q, +end + +lemma and_or_distrib_left (P Q R : Prop) : P ∧ (Q ∨ R) ↔ (P ∧ Q) ∨ (P ∧ R) := +begin + split, + intro h, + have p := h.1, + cases h.2 with q r, + left, + split, + exact p, + exact q, + right, + split, + exact p, + exact r, + intro h, + cases h with p_and_q p_and_r, + cases p_and_q with p q, + split, + exact p, + left, + exact q, + cases p_and_r with p r, + split, + exact p, + right, + exact r, +end + +lemma contra (P Q : Prop) : (P ∧ ¬ P) → Q := +begin + intro h, + rw not_iff_imp_false at h, + exfalso, + apply h.2, + exact h.1, +end + +lemma contrapositive2 (P Q : Prop) : (¬ Q → ¬ P) → (P → Q) := +begin + by_cases p : P; by_cases q : Q, + intros _ _, + exact q, + intro h, + have not_p := h q, + exfalso, + rw not_iff_imp_false at not_p, + apply not_p, + exact p, + intros _ _, + exact q, + intros h p, + have not_p := h q, + rw not_iff_imp_false at not_p, + exfalso, + apply not_p, + exact p, +end +
diff --git a/preposition.lean /dev/null @@ -1,68 +0,0 @@ -example (P Q : Prop) (p : P) (h : P → Q) : Q := -begin - apply h, - exact p, -end - -lemma imp_self (P : Prop) : P → P := -begin - intro p, - exact p, -end - -lemma maze (P Q R S T U: Prop) - (p : P) - (h : P → Q) - (i : Q → R) - (j : Q → T) - (k : S → T) - (l : T → U) : U := -begin - apply l, - apply j, - apply h, - exact p, -end - -example (P Q : Prop) : P → (Q → P) := -begin - intros p q, - exact p, -end - -example (P Q R : Prop) : (P → (Q → R)) → ((P → Q) → (P → R)) := -begin - intros h1 h2 p, - apply h1, - exact p, - apply h2, - exact p, -end - -lemma imp_trans (P Q R : Prop) : (P → Q) → ((Q → R) → (P → R)) := -begin - intros hpq hqr p, - apply hqr, - apply hpq, - exact p, -end - -lemma contrapositive (P Q : Prop) : (P → Q) → (¬ Q → ¬ P) := -begin - repeat {rw not_iff_imp_false}, - intros hpq not_q p, - apply not_q, - apply hpq, - exact p, -end - -example (A B C D E F G H I J K L : Prop) - ( f1 : A → B) ( f2 : B → E) ( f3 : E → D) - ( f4 : D → A) ( f5 : E → F) ( f6 : F → C) - ( f7 : B → C) ( f8 : F → G) ( f9 : G → J) - (f10 : I → J) (f11 : J → I) (f12 : I → H) - (f13 : E → H) (f14 : H → K) (f15 : I → L) : A → L := -begin - cc, -end -
diff --git /dev/null b/proposition.lean @@ -0,0 +1,68 @@ +example (P Q : Prop) (p : P) (h : P → Q) : Q := +begin + apply h, + exact p, +end + +lemma imp_self (P : Prop) : P → P := +begin + intro p, + exact p, +end + +lemma maze (P Q R S T U: Prop) + (p : P) + (h : P → Q) + (i : Q → R) + (j : Q → T) + (k : S → T) + (l : T → U) : U := +begin + apply l, + apply j, + apply h, + exact p, +end + +example (P Q : Prop) : P → (Q → P) := +begin + intros p q, + exact p, +end + +example (P Q R : Prop) : (P → (Q → R)) → ((P → Q) → (P → R)) := +begin + intros h1 h2 p, + apply h1, + exact p, + apply h2, + exact p, +end + +lemma imp_trans (P Q R : Prop) : (P → Q) → ((Q → R) → (P → R)) := +begin + intros hpq hqr p, + apply hqr, + apply hpq, + exact p, +end + +lemma contrapositive (P Q : Prop) : (P → Q) → (¬ Q → ¬ P) := +begin + repeat {rw not_iff_imp_false}, + intros hpq not_q p, + apply not_q, + apply hpq, + exact p, +end + +example (A B C D E F G H I J K L : Prop) + ( f1 : A → B) ( f2 : B → E) ( f3 : E → D) + ( f4 : D → A) ( f5 : E → F) ( f6 : F → C) + ( f7 : B → C) ( f8 : F → G) ( f9 : G → J) + (f10 : I → J) (f11 : J → I) (f12 : I → H) + (f13 : E → H) (f14 : H → K) (f15 : I → L) : A → L := +begin + cc, +end +