- Commit
- 1651271caad24a4a5dbc82f040ccee1fa0cdc36b
- Parent
- f13b42ae96d5ee5d71ed3743820d9bf7d8c2a4dc
- Author
- Pablo <pablo-pie@riseup.net>
- Date
Vectorized the row generation
Also implemented rendering of specific patches
Python scripts to generate 3D models of some complex curves
Vectorized the row generation
Also implemented rendering of specific patches
3 files changed, 119 insertions, 148 deletions
Status | Name | Changes | Insertions | Deletions |
Modified | .gitignore | 2 files changed | 1 | 1 |
Deleted | main.py | 1 file changed | 0 | 89 |
Modified | model.py | 2 files changed | 118 | 58 |
diff --git a/.gitignore b/.gitignore @@ -1,3 +1,3 @@ __pycache__ site/ -models.blend +models/
diff --git a/main.py /dev/null @@ -1,89 +0,0 @@ -import numpy as np -from model import Model, normalized_p, riemman_sphere_p - -def s(k: int, n: int) -> np.complex128: - return np.exp(2 * np.pi * 1j * k / n) - -EPS = 0.05 -XI_MAX = 15 - -def brieskorn_surface(n: int, - eps: float = EPS, xi_max: float = XI_MAX) -> Model: - """ - Returns a model of the Brieskorn surface z_1^3 + z_2^(6 n - 1) = 1 - """ - - if not (1 <= n <= 11): - raise ValueError(f"Parameter \"n\" should be in between 1 and 11: n = {n}") - - m = Model(normalized_p) - n_ = 6*n - 1 - - thetas = np.arange(0, np.pi / 2 + eps, eps) - xis = np.arange(-xi_max, xi_max + eps, eps) - - for k1 in range(0, 3): - for k2 in range(0, n_): - patch = [] - - for theta in thetas: - row = [] - for xi in xis: - u1 = (np.exp(xi + 1j * theta)+np.exp(-xi - 1j * theta))/2 - z1 = s(k1, 3) * (u1**(2/3)) - u2 = (np.exp(xi + 1j * theta)-np.exp(-xi - 1j * theta))/2j - z2 = s(k2, n_) * (u2**(2/n_)) - - row.append(np.array([z1, z2])) - - patch.append(row) - - m.append_patch(patch) - - return m - -def fermat_surface(n: int, eps: float = EPS, xi_max: float = XI_MAX) -> Model: - """ - Returns a model of the Fermat surface z_1^n + z_2^n = 1 - """ - - if n <= 0: - raise ValueError(f"Parameter \"n\" should be positive: n = {n}") - - m = Model(normalized_p) - - thetas = np.arange(0, np.pi / 2 + eps, eps) - xis = np.arange(-xi_max, xi_max + eps, eps) - - for k1 in range(0, n): - for k2 in range(0, n): - patch = [] - - for theta in thetas: - row = [] - for xi in xis: - u1 = (np.exp(xi + 1j * theta)+np.exp(-xi - 1j * theta))/2 - z1 = s(k1, n) * (u1**(2/n)) - u2 = (np.exp(xi + 1j * theta)-np.exp(-xi - 1j * theta))/2j - z2 = s(k2, n) * (u2**(2/n)) - - row.append(np.array([z1, z2])) - - patch.append(row) - - m.append_patch(patch) - - return m - -def main(): - # print("Creating Brieskorn model for n = 1...") - # m = brieskorn_surface(1, eps=0.01) - # m.write_obj("models/brieskorn1.obj") - # print("Done!") - - print("Creating Brieskorn model for n = 6...") - m = brieskorn_surface(6, eps=0.01) - m.write_obj("models/brieskorn6.obj") - print("Done!") - -if __name__ == "__main__": main()
diff --git a/model.py b/model.py @@ -1,70 +1,45 @@ -import numpy.linalg as la import numpy as np +import numpy.linalg as la from typing import List, Tuple, Iterator, Callable +Vector3 = np.ndarray[Tuple[3], np.dtype[np.float64]] +Patch = np.ndarray[Tuple[3, int, int], np.dtype[np.float64]] +ComplexGrid = np.ndarray[Tuple[int, int], np.dtype[np.complex128]] +Projection = Callable[[ComplexGrid, ComplexGrid], Patch] + class Model: - def __init__(self, p: Callable[[np.complex128, np.complex128], np.array]): - self.patches = [] - self.bounding_x = (0, 0) - self.bounding_y = (0, 0) - self.bounding_z = (0, 0) + def __init__(self, p: Projection): + self.patches: List[Patch] = [] self.projection = p - def append_patch(self, patch: List[List[np.array]]): + def append_patch(self, z1: ComplexGrid, z2: ComplexGrid): """ Appends a 2D array of points in ℂ² to the model and updates the bounding box """ - x_min, x_max = self.bounding_x - y_min, y_max = self.bounding_y - z_min, z_max = self.bounding_z - - patch_real = [[self.projection(z1, z2) for z1, z2 in row] - for row in patch] - - for row in patch_real: - for x, y, z in row: - x_min = min(x, x_min) - x_max = max(x, x_max) - y_min = min(y, y_min) - y_max = max(y, y_max) - z_min = min(z, z_min) - z_max = max(z, z_max) - - self.patches.append(patch_real) - self.bounding_x = x_min, x_max - self.bounding_y = y_min, y_max - self.bounding_z = z_min, z_max - - def vertices(self) -> Iterator[Tuple[np.float64]]: + self.patches.append(self.projection(z1, z2)) + + def vertices(self) -> Iterator[Vector3]: """ - Iterate through the vertices of the mesh in normalized position: - vertices are aligned to the center using the model's bounding box + Iterate through the vertices of the mesh """ - x_min, x_max = self.bounding_x - y_min, y_max = self.bounding_y - z_min, z_max = self.bounding_z - x_off = -(x_min + x_max)/2 - y_off = -(y_min + y_max)/2 - z_off = -(z_min + z_max)/2 - - return ((x + x_off, y + y_off, z + z_off) - for patch in self.patches for row in patch for x, y, z in row) + return (x[:, j, i] for x in self.patches + for i in range(x.shape[2]) for j in range(x.shape[1])) def write_obj(self, path: str): with open(path, "w") as f: f.write("# vertices\n") - for x, y, z in self.vertices(): - f.write(f"v {x:.3f} {y:.3f} {z:.3f}\n") + # TODO: omit repeated points + for x1, x2, x3 in self.vertices(): + f.write(f"v {x1:.3f} {x2:.3f} {x3:.3f}\n") f.write("\n# faces\n") v_i = 1 # OBJ indices start at 1 for patch in self.patches: - rows = len(patch) - cols = len(patch[0]) + _, cols, rows = patch.shape for theta_i in range(rows - 1): for xi_i in range(cols - 1): @@ -78,23 +53,108 @@ class Model: v_i += rows * cols -def normalized_p(z1: np.complex128, z2: np.complex128) -> np.array: +def normalized_p(z1: ComplexGrid, z2: ComplexGrid) -> Patch: "Projection ℝ⁴ → 𝕊³ + inclusion ℝ³ → 𝕊³" - v = np.array([z1, z2]) - v = v/la.norm(v) + assert z1.shape == z2.shape + + z = np.stack((z1, z2), axis=0) + w = z/la.norm(z, axis=0) + v = np.vstack([w.real, w.imag]) + x = v[:3, :, :]/(1 - v[3, :, :]) + + return x + +# TODO: vectorize this shit +# def riemman_sphere_p(z1: np.complex128, z2: np.complex128) -> Vector3: +# "Riemman-sphere transform + projection on the first 3 coordinates" +# v = np.array([z1.real, z1.imag, z2.real, z2.imag]) +# n_sqrd = la.norm(v)**2 +# +# u1, u2, _, _ = v / (1 + n_sqrd/4) +# u0 = np.float64(2 * (n_sqrd/4)/(1 + n_sqrd/4)) +# +# return (u0, u1, u2) + +def s(k: int, n: int) -> np.complex128: + return np.exp(2 * np.pi * 1j * k / n) + +EPS = 0.1 +XI_MAX = 15 + +def fermat_surface(n: int, eps: float = EPS, xi_max: float = XI_MAX) -> Model: + """ + Returns a model of the Fermat surface z1^n + z2^n = 1 + """ + if n <= 0: + raise ValueError(f"Parameter \"n\" should be positive: n = {n}") + + m = Model(normalized_p) + + theta, xi = np.meshgrid(np.arange(0, np.pi / 2 + eps, eps), + np.arange(-xi_max, xi_max + eps, eps)) + + for k1 in range(n): + for k2 in range(n): + u1 = (np.exp(xi + 1j * theta)+np.exp(-xi - 1j * theta))/2 + z1 = s(k1, n) * (u1**(2/n)) + u2 = (np.exp(xi + 1j * theta)-np.exp(-xi - 1j * theta))/2j + z2 = s(k2, n) * (u2**(2/n)) + z = np.stack((z1, z2), axis=0) + + m.append_patch(z) + + return m + +def brieskorn_surface(n: int, patches: Iterator[Tuple[int, int]] = None, + eps: float = EPS, xi_max: float = XI_MAX) -> Model: + """ + Returns the model of the Brieskorn surface z1^3 + z2^(6 n - 1) = 1 + """ + if not (1 <= n <= 11): + raise ValueError(f"Parameter \"n\" should be in between 1 and 11: n = {n}") + + k0 = 6*n - 1 + + if patches is None: + patches = ((k1, k2) for k1 in range(3) for k2 in range(k0)) + + m = Model(normalized_p) + + theta, xi = np.meshgrid(np.arange(0, np.pi / 2 + eps, eps), + np.arange(-xi_max, xi_max + eps, eps)) + + for k1, k2 in patches: + if not (0 <= k1 < 3) or not (0 <= k2 < k0): continue + + u1 = (np.exp(xi + 1j * theta)+np.exp(-xi - 1j * theta))/2 + z1 = s(k1, 3) * (u1**(2/3)) + u2 = (np.exp(xi + 1j * theta)-np.exp(-xi - 1j * theta))/2j + z2 = s(k2, k0) * (u2**(2/k0)) + + m.append_patch(z1, z2) + + return m - v_1, v_2 = v - x, y = v_1.real, v_1.imag - z, w = v_2.real, v_2.imag +def main(): + print("==> creating Brieskorn model for n = 1") + for k1 in range(3): + for k2 in range(5): + eps = 0.1 + if k2 == 1: eps = 0.008 - return np.array([x, y, z]) / (1 - w) + print(f"=> creating patch ({k1}, {k2:2})...", end=" ", flush=True) + m = brieskorn_surface(1, patches = [(k1, k2)], eps=eps) + print("done!") -def riemman_sphere_p(z1: np.complex128, z2: np.complex128) -> np.array: - "Riemman-sphere transform + projection on the first 3 coordinates" - v = np.array([z1.real, z1.imag, z2.real, z2.imag]) - n_sqrd = la.norm(v)**2 + print("=> rendering model to OBJ...", end=" ", flush=True) + m.write_obj(f"models/brieskorn1/{k1}.{k2}.obj") + print("done!") - u1, u2, _, _ = v / (1 + n_sqrd/4) - u0 = 2 * (n_sqrd/4)/(1 + n_sqrd/4) + # print("=> creating Brieskorn model for n = 6...", end=" ", flush=True) + # m = brieskorn_surface(6, eps=0.05) + # print("done!") + # print("=> rendering model to OBJ...", end=" ", flush=True) + # m.write_obj("models/brieskorn6.obj") + # print("done!") - return np.array([u0, u1, u2]) +if __name__ == "__main__": main()