- Commit
- 1126d5038b8c8e55cf01af2d68aa522c0a4cb81c
- Parent
- 78de3d7d569ec3094a0133da8770f81f6c17e4e1
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Implemented Claudio's suggestions
Riemannian Geometry course project on the manifold H¹(I, M) of class H¹ curves on a Riemannian manifold M and its applications to the geodesics problem
Implemented Claudio's suggestions
4 files changed, 83 insertions, 48 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | main.tex | 3 | 0 | 3 |
Modified | sections/applications.tex | 10 | 6 | 4 |
Modified | sections/introduction.tex | 14 | 7 | 7 |
Modified | sections/structure.tex | 104 | 70 | 34 |
diff --git a/main.tex b/main.tex @@ -2,9 +2,6 @@ \usepackage{titling} \addbibresource{references.bib} -% Configure how footnote numbers are displayed -\renewcommand{\thefootnote}{[\arabic{footnote}]} - \title{Global Analysis \& the Banach Manifold of Class \(H^1\) Curves} \author{Pablo} \date{July 2022}
diff --git a/sections/applications.tex b/sections/applications.tex @@ -470,9 +470,9 @@ We are now ready to state Morse's index theorem. \begin{theorem}[Morse] Let \(\gamma \in \Omega_{p q} M\) be a critical point of \(E\). Then the index of \(\gamma\) is given of the sum of the multiplicities of the proper - conjugate points of \(\gamma\)\footnote{By ``conjugate points of $\gamma$'' - we of course mean points conjugate to $\gamma(0) = p$ along $\gamma$.} in the - interior of \(I\). + conjugate points\footnote{By ``conjugate points of a geodesic $\gamma$'' we + of course mean points conjugate to $\gamma(0) = p$ along $\gamma$.} of + \(\gamma\) in the interior of \(I\). \end{theorem} Unfortunately we do not have the space to include the proof of Morse's theorem @@ -507,7 +507,9 @@ however, is the following consequence of Morse's theorem. is given by \(E(\eta) = E(\gamma) + \frac{1}{2} d^2 E_\gamma(X, X) + \cdots\). More precisely, \begin{equation}\label{eq:energy-taylor-series} - \frac{\abs{E(\eta) - E(\gamma) - \frac12 d^2 E_\gamma(X, X)}}{\norm{X}_1^2} + \frac + {\abs{E(\exp_\gamma(X)) - E(\gamma) - \frac{1}{2} d^2 E_\gamma(X, X)}} + {\norm{X}_1^2} \to 0 \end{equation} as \(X \to 0\).
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -129,13 +129,13 @@ manifolds to spaces modeled after Banach spaces. We begin by the former. is continuous. Since \(\mathcal{L}(V, W)\) is a Banach space under the operator norm, we may recursively define functions of class \(C^n\) for \(n > 1\): a function \(f : U \to W\) of class \(C^{n - 1}\) is called - \emph{differentiable of class \(C^n\)} if the map + \emph{differentiable of class \(C^n\)} if the map\footnote{Here we consider + the \emph{projective tensor product} of Banach spaces. See + \cite[ch.~1]{klingenberg}.} \[ d^{n - 1} f : U \to \mathcal{L}(V, \mathcal{L}(V, \cdots \mathcal{L}(V, W))) \cong \mathcal{L}(V^{\otimes n}, W) - \footnote{Here we consider the \emph{projective tensor product} of Banach - spaces. See \cite[ch.~1]{klingenberg}.} \] is of class \(C^1\). Finally, a map \(f : U \to W\) is called \emph{differentiable of class \(C^\infty\)} or \emph{smooth} if \(f\) is of @@ -151,7 +151,7 @@ chain rule}. : U_2 \to V_3\), the composition map \(g \circ f : U_1 \to V_3\) is smooth and its derivative is given by \[ - (d g \circ f)_p = d g_{f(p)} \circ d f_p + d (g \circ f)_p = d g_{f(p)} \circ d f_p \] \end{lemma} @@ -223,13 +223,13 @@ in \cite[ch.~1]{klingenberg} and \cite[ch.~2]{lang}. (\phi_{p, i} \circ \phi_{p, j}^{-1}) v & = (\varphi_i \circ \varphi_j^{-1} \circ \gamma_v)'(0) \\ \text{(chain rule)} - & = (d \varphi_i \circ \varphi_j^{-1})_{\varphi_j(p)} \dot\gamma_v(0) \\ - & = (d \varphi_i \circ \varphi_j^{-1})_{\varphi_j(p)} v + & = d (\varphi_i \circ \varphi_j^{-1})_{\varphi_j(p)} \dot\gamma_v(0) \\ + & = d (\varphi_i \circ \varphi_j^{-1})_{\varphi_j(p)} v \end{split} \] where \(v \in V_j\) and \(\gamma_v : (-\epsilon, \epsilon) \to V_j\) is any smooth curve with \(\gamma_v(0) = \varphi_j(p)\) and \(\dot\gamma_v(0) = v\): - \(\phi_{p, i} \circ \phi_{p, j}^{-1} = (d \varphi_i \circ + \(\phi_{p, i} \circ \phi_{p, j}^{-1} = d (\varphi_i \circ \varphi_j^{-1})_{\varphi_j(p)}\) is continuous by definition. \end{proof}
diff --git a/sections/structure.tex b/sections/structure.tex @@ -48,10 +48,10 @@ Denote by \({C'}^\infty(I, \mathbb{R}^n)\) the space of piece-wise curves in energy functional and the length functional are smooth maps. As most function spaces, \({C'}^\infty(I, \mathbb{R}^n)\) admits several natural topologies. Some of the most obvious candidates are the uniform topology and the topology -of the \(\norm\cdot_0\) norm, which are the topologies induces by the norms +of the \(\norm\cdot_0\) norm, which are the topologies induced by the norms \begin{align*} - \norm{\gamma}_\infty & = \sup_t \norm{\gamma(t)} \\ - \norm{\gamma}_0 & = \int_0^1 \norm{\gamma(t)}^2 \; \dt + \norm{\gamma}_\infty & = \sup_t \norm{\gamma(t)} \\ + \norm{\gamma}_0 & = \sqrt{\int_0^1 \norm{\gamma(t)}^2 \; \dt} \end{align*} respectively. @@ -99,7 +99,7 @@ natural candidate for a norm in \({C'}^\infty(I, \mathbb{R}^n)\) is \norm{\gamma}_1^2 = \norm{\gamma}_0^2 + \norm{\dot\gamma}_0^2, \] which is, of course, the norm induced by the inner product \(\langle \, , -\rangle_1\) -- here \(\norm{\cdot}_0\) denote the norm of \(H^0(I, +\rangle_1\) -- here \(\norm{\cdot}_0\) denotes the norm of \(H^0(I, \mathbb{R}^n) = L^2(I, \mathbb{R}^n)\). The other issue we face is one of completeness. Since \(\mathbb{R}^n\) has a @@ -168,12 +168,12 @@ find\dots \begin{proof} Given \(\xi \in H^0(E)\) we have - \[ + \begin{equation}\label{eq:zero-norm-le-infty-norm} \norm{\xi}_0^2 = \int_0^1 \norm{\xi_t}^2 \; \dt - \le \int_0^1 \norm{\xi}_\infty \; \dt - = \norm{\xi}_\infty - \] + \le \int_0^1 \norm{\xi}_\infty^2 \; \dt + = \norm{\xi}_\infty^2 + \end{equation} Now given \(\xi \in H^1(E)\) fix \(t_0, t_1 \in I\) with \(\norm{\xi}_\infty = \norm{\xi_{t_1}}\). Then @@ -183,14 +183,21 @@ find\dots & = \norm{\xi_{t_0}}^2 + \int_{t_0}^{t_1} \frac{\dd}{\dd s} \norm{\xi_s}^2 \; \dd s \\ \text{(\(\nabla\) is compatible with the metric)} - & = \norm{\xi_{t_0}}^2 + 2 \int_{t_0}^{t_1} - \left\langle \xi_s, \nabla_{\frac\dd{\dd s}} \xi_s \right\rangle + & = \norm{\xi_{t_0}}^2 + \int_{t_0}^{t_1} + 2 \left\langle \xi_s, \nabla_{\frac\dd{\dd s}} \xi_s \right\rangle \; \dd s \\ \text{(Cauchy-Schwarz)} - & \le \norm{\xi_{t_0}}^2 + 2 \int_0^1 - \norm{\xi_s} \cdot \norm{\nabla_{\frac\dd{\dd s}} \xi_s} \; \dd s \\ + & \le \norm{\xi_{t_0}}^2 + \int_0^1 + 2 \norm{\xi_s} \cdot \norm{\nabla_{\frac\dd{\dd s}} \xi_s} \; \dd s \\ + & \le \norm{\xi}_\infty^2 + + \int_0^1 \norm{\xi_s}^2 + \norm{\nabla_{\frac\dd\dt} \xi_s}^2 + \; \dd s \\ & \le \norm{\xi}_\infty^2 + \norm{\xi}_0^2 + \norm{\nabla_{\frac\dd\dt} \xi}_0^2 \\ + % TODO: This is actually wrong. Fix this. + \text{(because of equation (\ref{eq:zero-norm-le-infty-norm}))} + & \le \norm{\xi}_0^2 + + \norm{\xi}_0^2 + \norm{\nabla_{\frac\dd\dt} \xi}_0^2 \\ & \le 2 \norm{\xi}_1^2 \end{split} \] @@ -276,10 +283,10 @@ Finally, we find\dots for \(H^1(I, M)\) under the final topology of the maps \(\exp_\gamma\) -- i.e. the coarsest topology such that such maps are continuous. This atlas gives \(H^1(I, M)\) the structure of a \emph{separable} Banach manifold - modeled after separable Hilbert spaces, with typical representatives - \(H^1(\gamma^* TM) \cong H^1(I, \mathbb{R}^n)\)\footnote{Any trivialization - of $\gamma^* TM$ induces an isomorphism $H^1(\gamma^* TM) \isoto H^1(I, - \mathbb{R}^n)$.}. + modeled after separable Hilbert spaces, with typical + representatives\footnote{Any trivialization of $\gamma^* TM$ induces an + isomorphism $H^1(\gamma^* TM) \isoto H^1(I, \mathbb{R}^n)$.} \(H^1(\gamma^* + TM) \cong H^1(I, \mathbb{R}^n)\). \end{theorem} The fact that \(\exp_\gamma\) is bijective should be clear from the definition @@ -371,9 +378,9 @@ extended to a canonical isomorphism of vector bundles, as seen in\dots \] gives \(\coprod_{\gamma \in {C'}^\infty(I, M)} H^i(\gamma^* TM) \to H^1(I, M)\) the structure of a smooth vector bundle\footnote{Here we use the - canonical identification $T_{\gamma(t)} M \cong T_{X_t}^\vee TM$ to apply - the vector $Y_t \in T_{\gamma(t)} M$ to the map $(d \exp)_{X_t} : T_{X_t} TM - \to T_{\exp_{\gamma(t)}(X_t)} M$.}. + canonical identification $T_{\gamma(t)} M \cong T_{X_t} TM$ to apply the + vector $Y_t \in T_{\gamma(t)} M$ to the map $(d \exp)_{X_t} : T_{X_t} TM \to + T_{\exp_{\gamma(t)}(X_t)} M$.}. \end{lemma} \begin{proposition} @@ -394,17 +401,43 @@ extended to a canonical isomorphism of vector bundles, as seen in\dots \subset T H^1(I, M) \to H^1(W_\gamma) \times T_\gamma H^1(I, M) \] - of \(T H^1(I, M)\). - - By composing charts we get local vector bundle isomorphism \(\psi_{1, \gamma} - \circ (\operatorname{id}, \varphi_\gamma) \circ \varphi_\gamma : - \varphi_\gamma^{-1}(H^1(W_\gamma) \times T_\gamma H^1(I, M)) \isoto \psi_{1, - \gamma}(H^1(W_\gamma) \times H^1(\gamma^* TM))\). Because of the fact that - \(\varphi_\gamma\) and \(\psi_{1, \gamma}^{-1}\) are charts, this - isomorphisms agree in the intersections, so they may be glued together into a - global vector bundle isomorphism. Furthermore, by construction the - restriction of this isomorphism to \(T_\gamma H^1(I, M)\) with \(\gamma \in - {C'}^\infty(I, M)\) is given by \(\phi_\gamma\). + of \(T H^1(I, M)\) -- i.e. the charts given by\footnote{Once more, we use the + canonical identification $T_X H^1(W_\gamma) \cong H^1(\gamma^* TM)$ to apply + the vector $\phi_\gamma(Y) \in H^1(\gamma^* TM)$ to $(d \exp_\gamma)_X : T_X + H^1(W_\gamma) \to T_{\exp_\gamma(X)} H^1(I, M)$.} + \begin{align*} + \varphi_\gamma^{-1} : H^1(W_\gamma) \times T_\gamma H^1(I, M) + & \to T H^1(I, M) \\ + (X, Y) & \mapsto (d \exp_\gamma)_X \phi_\gamma(Y) + \end{align*} + + By composing charts we get fiber-preserving, fiber-wise linear diffeomorphism + \[ + \varphi_\gamma^{-1}(H^1(W_\gamma) \times T_\gamma H^1(I, M)) + \subset T H^1(I, M) + \isoto + \psi_{1, \gamma}(H^1(W_\gamma) \times H^1(\gamma^* TM)), + \] + which takes \(\varphi^{-1}(X, Y) \in T_{exp_\gamma(X)} H^1(I, M)\) to + \(\psi_{1, \gamma}(X, \phi_\gamma(Y)) \in H^1(\exp_\gamma(X)^* TM)\). With + enought patience, one can deduce from the fact that \(\varphi_\gamma\) and + \(\psi_{1, \gamma}^{-1}\) are charts that this maps agree in the intersection + of the open subsets \(\varphi_\gamma^{-1}(H^1(W_\gamma) \times T_\gamma + H^1(I, M))\), so that they may be glued together into a global smooth map + \(\Phi : T H^1(I, M) \to \coprod_{\eta \in H^1(I, M)} H^1(\eta^* TM)\). + + Since this map is a fiber-preserving, fiber-wise linear local diffeomorphism, + this is an isomorphism of vector bundles. + Furthermore, by construction + \[ + \Phi(X)_t + = \psi_{1, \gamma}(0, \phi_\gamma(X))_t + = (d \exp)_{0_{\gamma(t)}} \phi_\gamma(X)_t + = \phi_\gamma(X)_t + \] + for each \(\gamma \in {C'}^\infty(I, M)\) and \(X \in T_\gamma H^1(I, M)\). + In other words, \(\Phi\!\restriction_{T_\gamma H^1(I, M)} = \phi_\gamma\) as + required. \end{proof} At this point it may be tempting to think that we could now define the metric @@ -516,11 +549,14 @@ At this point it should be obvious that definition~\ref{def:h1-metric} does indeed endow \(H^1(I, M)\) with the structure of a Riemannian manifold: the inner products \(\langle \, , \rangle_1 : H^1(\gamma^* TM) \times H^1(\gamma^* TM) \to \mathbb{R}\) may be glued together into a single positive-definite -section \(\langle \, , \rangle_1 \in \Gamma( \operatorname{Sym}^2 -\coprod_\gamma H^1(\gamma^* TM))\) -- whose smoothness follows from +section \(\langle \, , \rangle_1 \in \Gamma\left(\operatorname{Sym}^2 +\coprod_\gamma H^1(\gamma^* TM)\right)\) -- whose smoothness follows from theorem~\ref{thm:h0-has-metric-extension}, proposition~\ref{thm:partial-is-smooth-sec} and proposition~\ref{thm:covariant-derivative-h0} -- which is then mapped to a positive-definite section of \(\operatorname{Sym}^2 T H^1(I, M)\) by the -induced isomorphism \(\operatorname{Sym}^2 \coprod_\gamma H^1(\gamma^* TM) -\isoto \operatorname{Sym}^2 T H^1(I, M)\). +induced isomorphism +\[ + \Gamma\left(\operatorname{Sym}^2 \coprod_\gamma H^1(\gamma^* TM)\right) + \isoto \Gamma(\operatorname{Sym}^2 T H^1(I, M)) +\]