- Commit
- 3df5b00924c1f7332aa4bff81e05592c8fce58fa
- Parent
- 8a220889310ccfa1fcbee93869e69aad8a08f5d0
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Removed an unnecessary label
Riemannian Geometry course project on the manifold H¹(I, M) of class H¹ curves on a Riemannian manifold M and its applications to the geodesics problem
Removed an unnecessary label
1 file changed, 2 insertions, 2 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/structure.tex | 4 | 2 | 2 |
diff --git a/sections/structure.tex b/sections/structure.tex @@ -168,12 +168,12 @@ find\dots \begin{proof} Given \(\xi \in H^0(E)\) we have - \begin{equation}\label{eq:zero-norm-le-infty-norm} + \[ \norm{\xi}_0^2 = \int_0^1 \norm{\xi_t}^2 \; \dt \le \int_0^1 \norm{\xi}_\infty^2 \; \dt = \norm{\xi}_\infty^2 - \end{equation} + \] Now given \(\xi \in H^1(E)\) fix \(t_0, t_1 \in I\) with \(\norm{\xi}_\infty = \norm{\xi_{t_1}}\) and \(\norm{\xi_{t_0}} \le \norm{\xi}_0\). If \(t_0 <