global-analysis-and-the-banach-manifold-of-class-h1-curvers

Riemannian Geometry course project on the manifold H¹(I, M) of class H¹ curves on a Riemannian manifold M and its applications to the geodesics problem

Commit
3df5b00924c1f7332aa4bff81e05592c8fce58fa
Parent
8a220889310ccfa1fcbee93869e69aad8a08f5d0
Author
Pablo <pablo-escobar@riseup.net>
Date

Removed an unnecessary label

Diffstat

1 file changed, 2 insertions, 2 deletions

Status File Name N° Changes Insertions Deletions
Modified sections/structure.tex 4 2 2
diff --git a/sections/structure.tex b/sections/structure.tex
@@ -168,12 +168,12 @@ find\dots
 
 \begin{proof}
   Given \(\xi \in H^0(E)\) we have
-  \begin{equation}\label{eq:zero-norm-le-infty-norm}
+  \[
     \norm{\xi}_0^2
     = \int_0^1 \norm{\xi_t}^2 \; \dt
     \le \int_0^1 \norm{\xi}_\infty^2 \; \dt
     = \norm{\xi}_\infty^2
-  \end{equation}
+  \]
 
   Now given \(\xi \in H^1(E)\) fix \(t_0, t_1 \in I\) with \(\norm{\xi}_\infty
   = \norm{\xi_{t_1}}\) and \(\norm{\xi_{t_0}} \le \norm{\xi}_0\). If \(t_0 <