- Commit
- 6ffcbd68ad48906dfb1346fc9f4fc1d496cc5c5b
- Parent
- 78562b870acd311da33d4d8d6e9876f9218b4013
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Removed unnecessary whitespace
Riemannian Geometry course project on the manifold H¹(I, M) of class H¹ curves on a Riemannian manifold M and its applications to the geodesics problem
Removed unnecessary whitespace
1 file changed, 13 insertions, 13 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/structure.tex | 26 | 13 | 13 |
diff --git a/sections/structure.tex b/sections/structure.tex @@ -429,8 +429,8 @@ words, we'll show\dots Given \(\gamma \in {C'}^\infty(I, M)\) and \(X \in H^1(\gamma^*)\), let \begin{align*} g_X^\gamma : H^0(\gamma^* TM) \times H^0(\gamma^* TM) & \to \RR \\ - (Y, Z) & - \mapsto \int_0^1 + (Y, Z) & + \mapsto \int_0^1 \langle (d\exp)_{X_t} Y_t, (d\exp)_{X_t} Z_t \rangle \; \dt \end{align*} @@ -447,16 +447,16 @@ words, we'll show\dots Furthermore, given \(\gamma \in {C'}^\infty(I, M)\) and \(X, Y \in H^0(\gamma^* TM)\) by construction we have \[ - g_\gamma(X, Y) - = g_0^\gamma(X, Y) - = \int_0^1 \langle (d \exp)_0 X_t, (d \exp)_0 Y_t \rangle \; \dt - = \int_0^1 \langle X_t, Y_t \rangle \; \dt + g_\gamma(X, Y) + = g_0^\gamma(X, Y) + = \int_0^1 \langle (d \exp)_0 X_t, (d \exp)_0 Y_t \rangle \; \dt + = \int_0^1 \langle X_t, Y_t \rangle \; \dt = \langle X, Y \rangle_0 \] \end{proof} \begin{proposition}\label{thm:partial-is-smooth-sec} - The map + The map \begin{align*} \partial : H^1(I, M) & \to \coprod_{\gamma} H^0\gamma^* TM \\ \gamma & \mapsto \dot\gamma @@ -471,14 +471,14 @@ words, we'll show\dots \Gamma\left(\coprod_{\gamma} H^0(\gamma^* TM)\right)\) the Levi-Civita connection of \(\coprod_\gamma H^0(\gamma^* TM)\). The map \begin{align*} - \mathfrak{X}(H^1(I, M)) + \mathfrak{X}(H^1(I, M)) & \to \Gamma\left(\coprod_\gamma H^0(\gamma^* TM)\right) \\ - \xi + \xi & \mapsto \nabla_\xi^0 \partial \end{align*} is such that \[ - (\nabla_X^0 \partial)_\gamma + (\nabla_X^0 \partial)_\gamma = \nabla_{\frac\dd\dt} X = \frac\nabla\dt X \] @@ -495,8 +495,8 @@ now finally describe the canonical Riemannian metric of \(H^1(I, M)\). \begin{definition}\label{def:h1-metric} Given \(\gamma \in H^1(I, M)\) and \(X, Y \in H^1(\gamma^* TM)\), let \[ - \langle X, Y \rangle_1 - = \langle X, Y \rangle_0 + \langle X, Y \rangle_1 + = \langle X, Y \rangle_0 + \left\langle \frac\nabla\dt X, \frac\nabla\dt Y \right\rangle_0 \] \end{definition} @@ -504,7 +504,7 @@ now finally describe the canonical Riemannian metric of \(H^1(I, M)\). At this point it should be obvious that definition~\ref{def:h1-metric} does indeed endow \(H^1(I, M)\) with the structure of a Riemannian manifold: the inner products \(\langle \, , \rangle_1 : H^1(\gamma^* TM) \times H^1(\gamma^* -TM) \to \RR\) may be glued together into a single positive-definite +TM) \to \RR\) may be glued together into a single positive-definite section \(\langle \, , \rangle_1 \in \Gamma( \Sym^2 \coprod_\gamma H^1(\gamma^* TM))\) -- whose smoothness follows from theorem~\ref{thm:h0-has-metric-extension},