diff --git a/sphere-quotient.tikz b/sphere-quotient.tikz
@@ -1,40 +1,30 @@
% This picture represents the isomorphism between the n-dimensional sphere and
% the quotient of the (n + 1)-dimensional simple orthogonal group by the
% n-dimensional simple orthogonal group
-% Copyright Pablo (C) 2021
+% Copyright Pablo (C) 2023
\begin{tikzpicture}[scale=0.5]
% The sphere
- \draw (0, 0) circle (3);
-
+ \begin{scope}
+ \clip (-3, -3) rectangle (3, 2.625);
+ \draw (0, 0) circle (3);
+ \end{scope}
+
% The equator
\begin{scope}
\clip (-3, 0) rectangle (3, -3);
\draw ellipse (3 and 1);
\end{scope}
-
- % The equator (on the other side of the sphere)
- \begin{scope}
- \clip (-3, 0) rectangle (3, 3);
- \draw[dotted] ellipse (3 and 1);
- \end{scope}
-
+
% Greenwhich
\begin{scope}
- \clip (-3, -3) rectangle (0, 3);
+ \clip (-3, -3) rectangle (0, 2.625);
\draw ellipse (1 and 3);
\end{scope}
-
- % Greenwhich (on the other side of the sphere)
- \begin{scope}
- \clip (3, -3) rectangle (0, 3);
- \draw[dotted] ellipse (1 and 3);
- \end{scope}
-
- \draw (-3, 2.625) -- (1.5, 2.625)
- -- (3, 3.375)
- node[right]{$T_p \mathbb{S}^n$}
- -- (-1.5, 3.375)
+
+ \draw (-3, 2.625) -- ( 1.5, 2.625)
+ -- ( 3, 3.375) node[right]{$T_p \mathbb{S}^n$}
+ -- (-1.5, 3.375)
-- cycle;
\filldraw[black] (0, 3) circle (2pt) node[right]{$p$};
- \draw (0, 3.375) node[above]{$\operatorname{SO}_n(\mathbb{R})$};
+ \draw (0, 3.375) node[above]{$\operatorname{SO}_n$};
\end{tikzpicture}