- Commit
- 01402bde32b64d270f33c945b8bd71bffb53ed68
- Parent
- e0d774c210962eaeca1f03ab7f067fd23befd5ee
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added the Lie algebra of an algebraic group to the list of examples
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added the Lie algebra of an algebraic group to the list of examples
1 file changed, 11 insertions, 1 deletion
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/introduction.tex | 12 | 11 | 1 |
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -65,7 +65,17 @@ T_1 G\). In particular, \(\mathfrak{g}\) is finite-dimensional. \end{example} -% TODOO: Point out this construction "works" for algebraic groups too! +\begin{example} + Let \(G\) be an algebraic \(K\)-group and \(K[G]\) denote the ring of regular + functions \(G \to K\). We call a derivation \(D : K[G] \to K[G]\) left + invariant if \(D(g \cdot f) = g \cdot D f\) for all \(g \in G\) and \(f \in + K[G]\) -- where the action of \(G\) in \(K[G]\) given by \((g \cdot f)(h) = + f(g^{-1} h)\). The commutator of left invariant derivations is invariant too, + so the space \(\operatorname{Lie}(G)\) of invariant derivations in \(K[G]\) + has the structure of a Lie algebra over \(K\) with brackets given by the + commutator of derivations. Again, \(\operatorname{Lie}(G) \cong T_1 G\) is + finite-dimensional. +\end{example} \begin{example} The Lie algebra \(\operatorname{Lie}(\operatorname{GL}_n(K))\) is canonically