- Commit
- e0d774c210962eaeca1f03ab7f067fd23befd5ee
- Parent
- 5c8594f41c2ffd0270d385a6176afb66e19c8c02
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added the adjoint representation to the list of examples of representations
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added the adjoint representation to the list of examples of representations
1 file changed, 8 insertions, 0 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/introduction.tex | 8 | 8 | 0 |
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -276,6 +276,14 @@ \end{definition} \begin{example} + Given a Lie algebra \(\mathfrak{g}\), consider the homomorphism + \(\operatorname{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})\) given by + \(\operatorname{ad}(X) Y = [X, Y]\). This gives \(\mathfrak{g}\) the + structure of a representation of \(\mathfrak{g}\), known as \emph{the adjoint + representation}. +\end{example} + +\begin{example} Given a Lie algebra \(\mathfrak{g}\) and \(\mathfrak{g}\)-modules \(V\) and \(W\), the the spaces \(V \oplus W\), \(V^*\), \(V \otimes W\) and \(\operatorname{Hom}(V, W)\) are all \(\mathfrak{g}\)-modules -- where the