- Commit
- 0904c078698220fd2d642ed7e993eb7d3b7c7be1
- Parent
- 3ba5201f22bbaa37bad3edeb844c4edaba7f5d13
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed some typos
Removed undued swaps in commutative diagrams
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed some typos
Removed undued swaps in commutative diagrams
1 file changed, 30 insertions, 30 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/complete-reducibility.tex | 60 | 30 | 30 |
diff --git a/sections/complete-reducibility.tex b/sections/complete-reducibility.tex @@ -397,56 +397,56 @@ basic}. In fact, all we need to know is\dots induces long exact sequences \begin{center} \begin{tikzcd} - 0 \rar & + 0 \rar & \operatorname{Hom}_{\mathfrak{g}}(L', N) - \rar[swap]{f \circ -}\ar[draw=none]{d}[name=X, anchor=center]{} & - \operatorname{Hom}_{\mathfrak{g}}(L', M) \rar[swap]{g \circ -} & + \rar{f \circ -}\ar[draw=none]{d}[name=X, anchor=center]{} & + \operatorname{Hom}_{\mathfrak{g}}(L', M) \rar{g \circ -} & \operatorname{Hom}_{\mathfrak{g}}(L', L) \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) |- (X.center) \tikztonodes -| ([xshift=-2ex]\tikztotarget.west) - -- (\tikztotarget)}]{dll}[at end]{} \\ & + -- (\tikztotarget)}]{dll}[at end]{} \\ & \operatorname{Ext}^1(L', N) - \rar\ar[draw=none]{d}[name=Y, anchor=center]{} & - \operatorname{Ext}^1(L', M) \rar & + \rar\ar[draw=none]{d}[name=Y, anchor=center]{} & + \operatorname{Ext}^1(L', M) \rar & \operatorname{Ext}^1(L', L) \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) |- (Y.center) \tikztonodes -| ([xshift=-2ex]\tikztotarget.west) - -- (\tikztotarget)}]{dll}[at end]{} \\ & - \operatorname{Ext}^2(L', N) \rar & - \operatorname{Ext}^2(L', M) \rar & - \operatorname{Ext}^2(L', L) \rar[dashed] & + -- (\tikztotarget)}]{dll}[at end]{} \\ & + \operatorname{Ext}^2(L', N) \rar & + \operatorname{Ext}^2(L', M) \rar & + \operatorname{Ext}^2(L', L) \rar[dashed] & \cdots \end{tikzcd} \end{center} and \begin{center} \begin{tikzcd} - 0 \rar & + 0 \rar & \operatorname{Hom}_{\mathfrak{g}}(L, L') - \rar[swap]{- \circ g}\ar[draw=none]{d}[name=X, anchor=center]{} & - \operatorname{Hom}_{\mathfrak{g}}(M, L') \rar[swap]{- \circ f} & + \rar{- \circ g}\ar[draw=none]{d}[name=X, anchor=center]{} & + \operatorname{Hom}_{\mathfrak{g}}(M, L') \rar{- \circ f} & \operatorname{Hom}_{\mathfrak{g}}(N, L') \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) |- (X.center) \tikztonodes -| ([xshift=-2ex]\tikztotarget.west) - -- (\tikztotarget)}]{dll}[at end]{} \\ & + -- (\tikztotarget)}]{dll}[at end]{} \\ & \operatorname{Ext}^1(L, L') - \rar\ar[draw=none]{d}[name=Y, anchor=center]{} & - \operatorname{Ext}^1(M, L') \rar & + \rar\ar[draw=none]{d}[name=Y, anchor=center]{} & + \operatorname{Ext}^1(M, L') \rar & \operatorname{Ext}^1(N, L') \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) |- (Y.center) \tikztonodes -| ([xshift=-2ex]\tikztotarget.west) - -- (\tikztotarget)}]{dll}[at end]{} \\ & - \operatorname{Ext}^2(L, L') \rar & - \operatorname{Ext}^2(M, L') \rar & - \operatorname{Ext}^2(N, L') \rar[dashed] & + -- (\tikztotarget)}]{dll}[at end]{} \\ & + \operatorname{Ext}^2(L, L') \rar & + \operatorname{Ext}^2(M, L') \rar & + \operatorname{Ext}^2(N, L') \rar[dashed] & \cdots \end{tikzcd} \end{center} @@ -519,9 +519,9 @@ This implies\dots \begin{center} \begin{tikzcd} 0 \rar & - N^{\mathfrak{g}} \rar[swap]{f} + N^{\mathfrak{g}} \rar{f} \ar[draw=none]{d}[name=X, anchor=center]{} & - M^{\mathfrak{g}} \rar[swap]{g} & + M^{\mathfrak{g}} \rar{g} & L^{\mathfrak{g}} \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) @@ -848,19 +848,19 @@ We are now finally ready to prove\dots long exact sequence \begin{center} \begin{tikzcd} - 0 \rar & - \operatorname{Hom}(L, N)^{\mathfrak{g}} \rar[swap]{f \circ -} - \ar[draw=none]{d}[name=X, anchor=center]{} & - \operatorname{Hom}(L, M)^{\mathfrak{g}} \rar[swap]{g \circ -} & + 0 \rar & + \operatorname{Hom}(L, N)^{\mathfrak{g}} \rar{f \circ -} + \ar[draw=none]{d}[name=X, anchor=center]{} & + \operatorname{Hom}(L, M)^{\mathfrak{g}} \rar{g \circ -} & \operatorname{Hom}(L, L)^{\mathfrak{g}} \ar[rounded corners, to path={ -- ([xshift=2ex]\tikztostart.east) |- (X.center) \tikztonodes -| ([xshift=-2ex]\tikztotarget.west) - -- (\tikztotarget)}]{dll}[at end]{} \\ & - H^1(\mathfrak{g}, \operatorname{Hom}(L, N)) \rar & - H^1(\mathfrak{g}, \operatorname{Hom}(L, M)) \rar & - H^1(\mathfrak{g}, \operatorname{Hom}(L, L)) \rar[dashed] & + -- (\tikztotarget)}]{dll}[at end]{} \\ & + H^1(\mathfrak{g}, \operatorname{Hom}(L, N)) \rar & + H^1(\mathfrak{g}, \operatorname{Hom}(L, M)) \rar & + H^1(\mathfrak{g}, \operatorname{Hom}(L, L)) \rar[dashed] & \cdots \end{tikzcd} \end{center}