- Commit
- 246a9562a2bc8f8c9bd53efff31b0ab8dc044332
- Parent
- df1d4f6972e0041bfb767c73264f052d06ece0a5
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added sp(2n) to the list of simple Lie algebras
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added sp(2n) to the list of simple Lie algebras
2 files changed, 5 insertions, 1 deletion
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/coherent-families.tex | 1 | 0 | 1 |
Modified | sections/introduction.tex | 5 | 5 | 0 |
diff --git a/sections/coherent-families.tex b/sections/coherent-families.tex @@ -16,7 +16,6 @@ In addition, it turns out that very few simple Lie algebras admit cuspidal modules at all. Specifically\dots -% TODOO: Add sp(2n) to the list of simple Lie algebras! \begin{proposition}[Fernando]\label{thm:only-sl-n-sp-have-cuspidal} Let \(\mathfrak{s}\) be a finite-dimensional simple Lie algebra and suppose there exists a cuspidal \(\mathfrak{s}\)-module. Then \(\mathfrak{s} \cong
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -469,6 +469,11 @@ Other interesting classes of Lie algebras are the so called \emph{simple} and classical Lie algebras. \end{example} +\begin{example} + The Lie algebras \(\mathfrak{sp}_{2n}(K)\) are simple for all \(n \ge 1\) -- + agina, see \cite[ch. 6]{kirillov}. +\end{example} + \begin{definition}\label{thm:sesimple-algebra}\index{semisimple!Lie algebra}\index{Lie algebra!semisimple Lie algebra} A Lie algebra \(\mathfrak{g}\) is called \emph{semisimple} if it is the direct sum of simple Lie algebras. Equivalently, a Lie algebra