- Commit
- 514cc87c502aa464e3ac03546687934494fb3c2e
- Parent
- c7ec3b4563fa84564b9ae1a0770c884268788827
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Tweaked the statement of a theorem
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Tweaked the statement of a theorem
1 file changed, 7 insertions, 4 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/coherent-families.tex | 11 | 7 | 4 |
diff --git a/sections/coherent-families.tex b/sections/coherent-families.tex @@ -91,12 +91,15 @@ combinatorial counterpart. Then \(\chi_\lambda = \chi_\mu\). \end{proposition} -% TODO: Note that if σ_β ∙ λ is not dominant integral then L(σ_β ∙ λ) is -% infinite-dimensional and 𝓔𝔁𝓽(L(σ_β ∙ λ)) ≅ 𝓔𝔁𝓽(L(λ)) +% TODO: Remark that the probability of σ_β ∙ λ ∈ P+ is slight: there precisely +% one eleement in the orbit of λ which is dominant integral \begin{proposition}\label{thm:lemma6.1} - Let \(\beta \in \Sigma\) and \(\lambda \notin P^+\) be such that + Let \(\beta \in \Sigma\) and \(\lambda \notin P^+\) be such that. \(L(\lambda)\) is bounded and \(\lambda(H_\beta) \notin \mathbb{N}\). Then - \(L(\sigma_\beta \bullet \lambda) \subset \mExt(L(\lambda))\). + \(L(\sigma_\beta \bullet \lambda) \subset \mExt(L(\lambda))\). In particular, + if \(\sigma_\beta \bullet \lambda \notin P^+\) then \(L(\sigma_\beta)\) is a + bounded infinite-dimensional \(\mathfrak{g}\)-module and + \(\mExt(L(\sigma_\beta \bullet \lambda)) \cong \mExt(L(\lambda))\). \end{proposition} % TODOO: Treat the case of sl(2) here?