diff --git a/sections/sl2-sl3.tex b/sections/sl2-sl3.tex
@@ -908,11 +908,11 @@ weight of \(V\) we started with.
\begin{rootSystem}{A}
\setlength{\weightRadius}{2pt}
\weightLattice{5}
- \draw[thick] \weight{3}{1} -- \weight{-3}{4};
- \draw[thick] \weight{3}{1} -- \weight{4}{-1};
- \draw[thick] \weight{-3}{4} -- \weight{-4}{3};
- \draw[thick] \weight{-4}{3} -- \weight{-1}{-3};
- \draw[thick] \weight{1}{-4} -- \weight{4}{-1};
+ \draw[thick] \weight{3}{1} -- \weight{-3}{4};
+ \draw[thick] \weight{3}{1} -- \weight{4}{-1};
+ \draw[thick] \weight{-3}{4} -- \weight{-4}{3};
+ \draw[thick] \weight{-4}{3} -- \weight{-1}{-3};
+ \draw[thick] \weight{1}{-4} -- \weight{4}{-1};
\draw[thick] \weight{-1}{-3} -- \weight{1}{-4};
\wt[black]{-4}{3}
\wt[black]{-3}{1}
@@ -992,8 +992,8 @@ establishing\dots
\begin{theorem}\label{thm:sl3-existence-uniqueness}
For each pair of positive integers \(n\) and \(m\), there exists precisely
- one irreducible representation \(V\) of \(\mathfrak{sl}_3(K)\) whose highest
- weight is \(n \alpha_1 - m \alpha_3\).
+ one finite-dimensional irreducible representation \(V\) of
+ \(\mathfrak{sl}_3(K)\) whose highest weight is \(n \alpha_1 - m \alpha_3\).
\end{theorem}
To proceed further we once again refer to the approach we employed in the case
@@ -1006,20 +1006,124 @@ highest weight vector under successive applications by half of the root spaces
of \(\mathfrak{sl}_2(K)\). The advantage of this alternative formulation is, of
course, that the same holds for \(\mathfrak{sl}_3(K)\). Specifically\dots
-\begin{theorem}\label{thm:irr-sl3-span}
+\begin{proposition}\label{thm:sl3-positive-roots-span-all-irr-rep}
Given an irreducible \(\mathfrak{sl}_3(K)\)-representation \(V\) and a
highest weight vector \(v \in V\), \(V\) is spanned by the images of \(v\)
under successive applications of \(E_{2 1}\), \(E_{3 1}\) and \(E_{3 2}\).
-\end{theorem}
+\end{proposition}
+
+\begin{proof}
+ Given the fact \(V\) is irreducible, it suffices to show that the subspace
+ \(W\) spanned by successive applications of \(E_{2 1}\), \(E_{3 1}\) and
+ \(E_{3 2}\) to \(v\) is stable under the action of \(\mathfrak{sl}_3(K)\).
+ In addition, since \([E_{2 1}, E_{3 1}] = [E_{3 1}, E_{3 2}] = 0\) and
+ \([E_{2 1}, E_{3 2}] = - E_{3 1}\), all successive product of \(E_{2 1}\),
+ \(E_{3 1}\) and \(E_{3 2}\) in \(\mathcal{U}(\mathfrak{sl}_3(K))\) can be
+ written as \(E_{2 1}^a E_{3 1}^b E_{3 1}^c\) for some \(a\), \(b\) and \(c\),
+ so that \(W\) is spanned by the elements \(E_{2 1}^a E_{3 1}^b E_{3 1}^c v\).
+
+ Recall that \(E_{i j}\) maps \(V_\mu\) to \(V_{\mu + \alpha_i - \alpha_j}\).
+ In particular, \(E_{2 1}^a E_{3 1}^b E_{3 1}^c v \in V_{\lambda - a (\alpha_1
+ - \alpha_2) - b (\alpha_1 - \alpha_3) - c (\alpha_2 - \alpha_3)}\). In other
+ words,
+ \[
+ H E_{2 1}^a E_{3 1}^b E_{3 1}^c v
+ = (\lambda - a (\alpha_1 - \alpha_2)
+ - b (\alpha_1 - \alpha_3)
+ - c (\alpha_2 - \alpha_3))(H)
+ \cdot E_{2 1}^a E_{3 1}^b E_{3 1}^c v
+ \in W
+ \]
+ for all \(H \in \mathfrak{h}\) and \(W\) is stable under the action of
+ \(\mathfrak{h}\). On the other hand, \(W\) is clearly stable under the action
+ of \(E_{2 1}\), \(E_{3 1}\) and \(E_{3 2}\). All it's left is to show \(W\)
+ is stable under the action of \(E_{1 2}\), \(E_{1 3}\) and \(E_{2 3}\).
+
+ We begin by analyzing the case of \(E_{1 2}\). We have
+ \[
+ \begin{split}
+ E_{1 2} E_{2 1}^a E_{3 1}^b E_{3 2}^c v
+ & = ([E_{1 2}, E_{2 1}] + E_{2 1} E_{1 2})
+ E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c v \\
+ & = E_{2 1} ([E_{1 2}, E_{2 1}] + E_{2 1} E_{1 2})
+ E_{2 1}^{a - 2} E_{3 1}^b E_{3 2}^c v \\
+ & \phantom{=} \; +
+ (\lambda - (a - 1) (\alpha_1 - \alpha_2)
+ - b (\alpha_1 - \alpha_3)
+ - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}])
+ \cdot
+ E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c v \\
+ & = E_{2 1}^2 ([E_{1 2}, E_{2 1}] + E_{2 1} E_{1 2})
+ E_{2 1}^{a - 3} E_{3 1}^b E_{3 2}^c v \\
+ & \phantom{=} \; +
+ (\lambda - (a - 1) (\alpha_1 - \alpha_2)
+ - b (\alpha_1 - \alpha_3)
+ - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}])
+ \cdot
+ E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c v \\
+ & \phantom{=} \; +
+ (\lambda - (a - 2) (\alpha_1 - \alpha_2)
+ - b (\alpha_1 - \alpha_3)
+ - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}])
+ \cdot
+ E_{2 1}^{a - 2} E_{3 1}^b E_{3 2}^c v \\
+ & \; \; \vdots \\
+ & = E_{2 1}^a E_{1 2} E_{3 1}^b E_{3 2}^c v \\
+ & \phantom{=} \; +
+ (\lambda - (a - 1) (\alpha_1 - \alpha_2)
+ - b (\alpha_1 - \alpha_3)
+ - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}])
+ \cdot
+ E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c v \\
+ & \phantom{=} \; +
+ (\lambda - (a - 2) (\alpha_1 - \alpha_2)
+ - b (\alpha_1 - \alpha_3)
+ - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}])
+ \cdot
+ E_{2 1}^{a - 2} E_{3 1}^b E_{3 2}^c v \\
+ & \phantom{=} \; + \cdots \\
+ & \phantom{=} \; +
+ (\lambda - (a - a) (\alpha_1 - \alpha_2)
+ - b (\alpha_1 - \alpha_3)
+ - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}])
+ \cdot
+ E_{2 1}^{a - a} E_{3 1}^b E_{3 2}^c v \\
+ \end{split}
+ \]
+
+ Since \((\lambda - (a - k) (\alpha_1 - \alpha_2) - b (\alpha_1 - \alpha_3)
+ - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}]) \cdot E_{2 1}^{a - k} E_{3
+ 1}^b E_{3 2}^c v \in W\) for all \(k\), it suffices to show \(E_{2 1}^a E_{1
+ 2} E_{3 1}^b E_{3 2}^c v \in W\). But
+ \[
+ \begin{split}
+ E_{1 2} E_{3 1}^b
+ & = (E_{3 1} E_{1 2} - E_{3 2}) E_{3 1}^{b - 1} \\
+ & = E_{3 1} E_{1 2} E_{3 1}^{b - 1}
+ - E_{3 1} E_{3 2} E_{3 1}^{b - 1} \\
+ & = E_{3 1} (E_{3 1} E_{1 2} - E_{3 2}) E_{3 1}^{b - 2}
+ - E_{3 2} E_{3 1}^b \\
+ & \; \; \vdots \\
+ & = E_{3 1}^b E_{1 2} - b E_{3 2} E_{3 1}^b \\
+ \end{split},
+ \]
+ given \([E_{1 2}, E_{3 1}] = - E_{3 2}\) and \([E_{3 2}, E_{3 1}] = 0\).
+ It then follows from the fact \(E_{1 2} v = 0\) that
+ \[
+ E_{2 1}^a E_{1 2} E_{3 1}^b E_{3 2}^c v
+ = E_{2 1}^a E_{3 1}^b E_{3 2}^c E_{1 2} v
+ - b E_{2 1}^a E_{3 1}^b E_{3 2}^{c + 1} v
+ = - b E_{2 1}^a E_{3 1}^b E_{3 2}^{c + 1} v \in W,
+ \]
+ given that \(E_{1 2}\) and \(E_{3 2}\) commute. Hence \(E_{1 2} E_{2 1}^a
+ E_{3 1}^b E_{3 2}^c v \in W\). Similarly,
+ \[
+ E_{1 3} E_{2 1}^a E_{3 1}^b E_{3 2}^c v,
+ E_{2 3} E_{2 1}^a E_{3 1}^b E_{3 2}^c v \in W
+ \]
+\end{proof}
-% TODO: Add a proof? We can hind the induction in "..." fairly easily
-The proof of theorem~\ref{thm:irr-sl3-span} is very similar to that of
-proposition~\ref{thm:basis-of-irr-rep}: we use the commutator relations of
-\(\mathfrak{sl}_3(K)\) to inductively show that the subspace spanned by the
-images of a highest weight vector under successive applications of \(E_{2 1}\),
-\(E_{3 1}\) and \(E_{3 2}\) is invariant under the action of
-\(\mathfrak{sl}_3(K)\) -- please refer to \cite{fulton-harris} for further
-details. The same argument also goes to show\dots
+The same argument also goes to show\dots
\begin{corollary}\label{thm:irr-component-of-high-vec}
Given a representation \(V\) of \(\mathfrak{sl}_3(K)\) with highest weight
@@ -1029,8 +1133,8 @@ details. The same argument also goes to show\dots
\end{corollary}
This is very interesting to us since it implies that finding \emph{any}
-representation whose highest weight is \(n \alpha_1 - m \alpha_2\) is enough
-for establishing the ``existence'' part of
+finite-dimensional representation whose highest weight is \(n \alpha_1 - m
+\alpha_2\) is enough for establishing the ``existence'' part of
theorem~\ref{thm:sl3-existence-uniqueness}. Moreover, constructing such
representation turns out to be quite simple.