- Commit
- 578d7a44d93cd41a10e02dd46e042a452ee2eb49
- Parent
- 12047085f6e751cae156e4fb690b3f7ebeace90c
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added a proof of a technical result
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added a proof of a technical result
2 files changed, 131 insertions, 19 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/semisimple-algebras.tex | 8 | 8 | 0 |
Modified | sections/sl2-sl3.tex | 142 | 123 | 19 |
diff --git a/sections/semisimple-algebras.tex b/sections/semisimple-algebras.tex @@ -651,6 +651,14 @@ the argument used for \(\mathfrak{sl}_3(K)\). Namely\dots irreducible. \end{proposition} +The proof of proposition~\ref{thm:irr-subrep-generated-by-vec} is very similar +to that of proposition~\ref{thm:sl3-positive-roots-span-all-irr-rep} in +spirit: we use the commutator relations of \(\mathfrak{g}\) to inductively show +that the subspace spanned by the images of a highest weight vector under +successive applications of negative root vectors is invariant under the action +of \(\mathfrak{g}\) -- please refer to \cite{fulton-harris} for further +details. Of course, what we are really interested in is\dots + \begin{corollary} Let \(V\) and \(W\) be finite-dimensional irreducible \(\mathfrak{g}\)-modules with highest weight given by some common \(\lambda
diff --git a/sections/sl2-sl3.tex b/sections/sl2-sl3.tex @@ -908,11 +908,11 @@ weight of \(V\) we started with. \begin{rootSystem}{A} \setlength{\weightRadius}{2pt} \weightLattice{5} - \draw[thick] \weight{3}{1} -- \weight{-3}{4}; - \draw[thick] \weight{3}{1} -- \weight{4}{-1}; - \draw[thick] \weight{-3}{4} -- \weight{-4}{3}; - \draw[thick] \weight{-4}{3} -- \weight{-1}{-3}; - \draw[thick] \weight{1}{-4} -- \weight{4}{-1}; + \draw[thick] \weight{3}{1} -- \weight{-3}{4}; + \draw[thick] \weight{3}{1} -- \weight{4}{-1}; + \draw[thick] \weight{-3}{4} -- \weight{-4}{3}; + \draw[thick] \weight{-4}{3} -- \weight{-1}{-3}; + \draw[thick] \weight{1}{-4} -- \weight{4}{-1}; \draw[thick] \weight{-1}{-3} -- \weight{1}{-4}; \wt[black]{-4}{3} \wt[black]{-3}{1} @@ -992,8 +992,8 @@ establishing\dots \begin{theorem}\label{thm:sl3-existence-uniqueness} For each pair of positive integers \(n\) and \(m\), there exists precisely - one irreducible representation \(V\) of \(\mathfrak{sl}_3(K)\) whose highest - weight is \(n \alpha_1 - m \alpha_3\). + one finite-dimensional irreducible representation \(V\) of + \(\mathfrak{sl}_3(K)\) whose highest weight is \(n \alpha_1 - m \alpha_3\). \end{theorem} To proceed further we once again refer to the approach we employed in the case @@ -1006,20 +1006,124 @@ highest weight vector under successive applications by half of the root spaces of \(\mathfrak{sl}_2(K)\). The advantage of this alternative formulation is, of course, that the same holds for \(\mathfrak{sl}_3(K)\). Specifically\dots -\begin{theorem}\label{thm:irr-sl3-span} +\begin{proposition}\label{thm:sl3-positive-roots-span-all-irr-rep} Given an irreducible \(\mathfrak{sl}_3(K)\)-representation \(V\) and a highest weight vector \(v \in V\), \(V\) is spanned by the images of \(v\) under successive applications of \(E_{2 1}\), \(E_{3 1}\) and \(E_{3 2}\). -\end{theorem} +\end{proposition} + +\begin{proof} + Given the fact \(V\) is irreducible, it suffices to show that the subspace + \(W\) spanned by successive applications of \(E_{2 1}\), \(E_{3 1}\) and + \(E_{3 2}\) to \(v\) is stable under the action of \(\mathfrak{sl}_3(K)\). + In addition, since \([E_{2 1}, E_{3 1}] = [E_{3 1}, E_{3 2}] = 0\) and + \([E_{2 1}, E_{3 2}] = - E_{3 1}\), all successive product of \(E_{2 1}\), + \(E_{3 1}\) and \(E_{3 2}\) in \(\mathcal{U}(\mathfrak{sl}_3(K))\) can be + written as \(E_{2 1}^a E_{3 1}^b E_{3 1}^c\) for some \(a\), \(b\) and \(c\), + so that \(W\) is spanned by the elements \(E_{2 1}^a E_{3 1}^b E_{3 1}^c v\). + + Recall that \(E_{i j}\) maps \(V_\mu\) to \(V_{\mu + \alpha_i - \alpha_j}\). + In particular, \(E_{2 1}^a E_{3 1}^b E_{3 1}^c v \in V_{\lambda - a (\alpha_1 + - \alpha_2) - b (\alpha_1 - \alpha_3) - c (\alpha_2 - \alpha_3)}\). In other + words, + \[ + H E_{2 1}^a E_{3 1}^b E_{3 1}^c v + = (\lambda - a (\alpha_1 - \alpha_2) + - b (\alpha_1 - \alpha_3) + - c (\alpha_2 - \alpha_3))(H) + \cdot E_{2 1}^a E_{3 1}^b E_{3 1}^c v + \in W + \] + for all \(H \in \mathfrak{h}\) and \(W\) is stable under the action of + \(\mathfrak{h}\). On the other hand, \(W\) is clearly stable under the action + of \(E_{2 1}\), \(E_{3 1}\) and \(E_{3 2}\). All it's left is to show \(W\) + is stable under the action of \(E_{1 2}\), \(E_{1 3}\) and \(E_{2 3}\). + + We begin by analyzing the case of \(E_{1 2}\). We have + \[ + \begin{split} + E_{1 2} E_{2 1}^a E_{3 1}^b E_{3 2}^c v + & = ([E_{1 2}, E_{2 1}] + E_{2 1} E_{1 2}) + E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c v \\ + & = E_{2 1} ([E_{1 2}, E_{2 1}] + E_{2 1} E_{1 2}) + E_{2 1}^{a - 2} E_{3 1}^b E_{3 2}^c v \\ + & \phantom{=} \; + + (\lambda - (a - 1) (\alpha_1 - \alpha_2) + - b (\alpha_1 - \alpha_3) + - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}]) + \cdot + E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c v \\ + & = E_{2 1}^2 ([E_{1 2}, E_{2 1}] + E_{2 1} E_{1 2}) + E_{2 1}^{a - 3} E_{3 1}^b E_{3 2}^c v \\ + & \phantom{=} \; + + (\lambda - (a - 1) (\alpha_1 - \alpha_2) + - b (\alpha_1 - \alpha_3) + - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}]) + \cdot + E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c v \\ + & \phantom{=} \; + + (\lambda - (a - 2) (\alpha_1 - \alpha_2) + - b (\alpha_1 - \alpha_3) + - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}]) + \cdot + E_{2 1}^{a - 2} E_{3 1}^b E_{3 2}^c v \\ + & \; \; \vdots \\ + & = E_{2 1}^a E_{1 2} E_{3 1}^b E_{3 2}^c v \\ + & \phantom{=} \; + + (\lambda - (a - 1) (\alpha_1 - \alpha_2) + - b (\alpha_1 - \alpha_3) + - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}]) + \cdot + E_{2 1}^{a - 1} E_{3 1}^b E_{3 2}^c v \\ + & \phantom{=} \; + + (\lambda - (a - 2) (\alpha_1 - \alpha_2) + - b (\alpha_1 - \alpha_3) + - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}]) + \cdot + E_{2 1}^{a - 2} E_{3 1}^b E_{3 2}^c v \\ + & \phantom{=} \; + \cdots \\ + & \phantom{=} \; + + (\lambda - (a - a) (\alpha_1 - \alpha_2) + - b (\alpha_1 - \alpha_3) + - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}]) + \cdot + E_{2 1}^{a - a} E_{3 1}^b E_{3 2}^c v \\ + \end{split} + \] + + Since \((\lambda - (a - k) (\alpha_1 - \alpha_2) - b (\alpha_1 - \alpha_3) + - c (\alpha_2 - \alpha_3)) ([E_{1 2}, E_{2 1}]) \cdot E_{2 1}^{a - k} E_{3 + 1}^b E_{3 2}^c v \in W\) for all \(k\), it suffices to show \(E_{2 1}^a E_{1 + 2} E_{3 1}^b E_{3 2}^c v \in W\). But + \[ + \begin{split} + E_{1 2} E_{3 1}^b + & = (E_{3 1} E_{1 2} - E_{3 2}) E_{3 1}^{b - 1} \\ + & = E_{3 1} E_{1 2} E_{3 1}^{b - 1} + - E_{3 1} E_{3 2} E_{3 1}^{b - 1} \\ + & = E_{3 1} (E_{3 1} E_{1 2} - E_{3 2}) E_{3 1}^{b - 2} + - E_{3 2} E_{3 1}^b \\ + & \; \; \vdots \\ + & = E_{3 1}^b E_{1 2} - b E_{3 2} E_{3 1}^b \\ + \end{split}, + \] + given \([E_{1 2}, E_{3 1}] = - E_{3 2}\) and \([E_{3 2}, E_{3 1}] = 0\). + It then follows from the fact \(E_{1 2} v = 0\) that + \[ + E_{2 1}^a E_{1 2} E_{3 1}^b E_{3 2}^c v + = E_{2 1}^a E_{3 1}^b E_{3 2}^c E_{1 2} v + - b E_{2 1}^a E_{3 1}^b E_{3 2}^{c + 1} v + = - b E_{2 1}^a E_{3 1}^b E_{3 2}^{c + 1} v \in W, + \] + given that \(E_{1 2}\) and \(E_{3 2}\) commute. Hence \(E_{1 2} E_{2 1}^a + E_{3 1}^b E_{3 2}^c v \in W\). Similarly, + \[ + E_{1 3} E_{2 1}^a E_{3 1}^b E_{3 2}^c v, + E_{2 3} E_{2 1}^a E_{3 1}^b E_{3 2}^c v \in W + \] +\end{proof} -% TODO: Add a proof? We can hind the induction in "..." fairly easily -The proof of theorem~\ref{thm:irr-sl3-span} is very similar to that of -proposition~\ref{thm:basis-of-irr-rep}: we use the commutator relations of -\(\mathfrak{sl}_3(K)\) to inductively show that the subspace spanned by the -images of a highest weight vector under successive applications of \(E_{2 1}\), -\(E_{3 1}\) and \(E_{3 2}\) is invariant under the action of -\(\mathfrak{sl}_3(K)\) -- please refer to \cite{fulton-harris} for further -details. The same argument also goes to show\dots +The same argument also goes to show\dots \begin{corollary}\label{thm:irr-component-of-high-vec} Given a representation \(V\) of \(\mathfrak{sl}_3(K)\) with highest weight @@ -1029,8 +1133,8 @@ details. The same argument also goes to show\dots \end{corollary} This is very interesting to us since it implies that finding \emph{any} -representation whose highest weight is \(n \alpha_1 - m \alpha_2\) is enough -for establishing the ``existence'' part of +finite-dimensional representation whose highest weight is \(n \alpha_1 - m +\alpha_2\) is enough for establishing the ``existence'' part of theorem~\ref{thm:sl3-existence-uniqueness}. Moreover, constructing such representation turns out to be quite simple.