- Commit
- 7346488bf450127872b09f2236480ee50f256421
- Parent
- 095e6b717ea737acd0da44ffdb4baf2cd107503c
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added the trivial representation to the list of examples
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added the trivial representation to the list of examples
1 file changed, 19 insertions, 11 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/introduction.tex | 30 | 19 | 11 |
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -716,17 +716,9 @@ concept of a \(\mathcal{U}(\mathfrak{g})\)-module entirely in terms of \end{definition} \begin{example} - The space \(K[x, y]\) is a representation of \(\mathfrak{sl}_2(K)\) with - \begin{align*} - p & \overset{e}{\mapsto} x \frac{\mathrm{d}}{\mathrm{d}y} p & - p & \overset{h}{\mapsto} - \left( - x \frac{\mathrm{d}}{\mathrm{d}x} - - y \frac{\mathrm{d}}{\mathrm{d}y} - \right) - p & - p & \overset{f}{\mapsto} y \frac{\mathrm{d}}{\mathrm{d}x} p & - \end{align*} + Given a Lie algebra \(\mathfrak{g}\), the zero map \(0 : \mathfrak{g} \to K\) + gives \(K\) the structure of a representation of \(\mathfrak{g}\), known as + \emph{the trivial representation}. \end{example} \begin{example} @@ -737,6 +729,22 @@ concept of a \(\mathcal{U}(\mathfrak{g})\)-module entirely in terms of representation}. \end{example} +It is usual practice to think of a representation \(V\) of \(\mathfrak{g}\) in +terms of an action of \(\mathfrak{g}\) in a vector space and write simply \(X +\cdot v\) or \(X v\) for \(\rho(X) v\). For instance, one might say\dots + +\begin{example} + The space \(K[x, y]\) is a representation of \(\mathfrak{sl}_2(K)\) with + \begin{align*} + e \cdot p & = x \frac{\mathrm{d}}{\mathrm{d}y} p & + h \cdot p & = + \left( + x \frac{\mathrm{d}}{\mathrm{d}x} - y \frac{\mathrm{d}}{\mathrm{d}y} + \right) p & + f \cdot p & = y \frac{\mathrm{d}}{\mathrm{d}x} p & + \end{align*} +\end{example} + \begin{example} Given a Lie algebra \(\mathfrak{g}\), the algebra \(\mathcal{U}(\mathfrak{g})\) is a \(\mathfrak{g}\)-module, where the action