diff --git a/sections/introduction.tex b/sections/introduction.tex
@@ -601,8 +601,8 @@ subalgebra. In practice this means\dots
homomorphism of algebras \(\mathcal{U}(\mathfrak{g}) \to A\).
\begin{center}
\begin{tikzcd}
- \mathcal{U}(\mathfrak{g}) \rar[dotted] & A \dar[Rightarrow, no head] \\
- \mathfrak{g} \rar[swap]{f} \uar & A
+ \mathfrak{g} \rar{f} \dar & A \\
+ \mathcal{U}(\mathfrak{g}) \urar[dotted] &
\end{tikzcd}
\end{center}
\end{proposition}
@@ -613,8 +613,8 @@ subalgebra. In practice this means\dots
\(\tilde f : T \mathfrak{g} \to A\) such that
\begin{center}
\begin{tikzcd}
- T \mathfrak{g} \arrow[dotted]{dr}{\tilde f} & \\
- \mathfrak{g} \uar \rar[swap]{f} & A
+ \mathfrak{g} \dar \rar{f} & A \\
+ T \mathfrak{g} \urar[swap, dotted]{\tilde f} &
\end{tikzcd}
\end{center}
@@ -649,11 +649,10 @@ algebras \(\mathcal{U}(f) : \mathcal{U}(\mathfrak{g}) \to
\mathcal{U}(\mathfrak{h})\) satisfying
\begin{center}
\begin{tikzcd}
- \mathcal{U}(\mathfrak{g}) \arrow[dotted]{rr}{\mathcal{U}(f)} & &
- \mathcal{U}(\mathfrak{h}) \dar[Rightarrow, no head] \\
- \mathfrak{g} \rar[swap]{f} \uar &
- \mathfrak{h} \rar &
- \mathcal{U}(\mathfrak{h})
+ \mathfrak{g} \rar{f} \dar &
+ \mathfrak{h} \rar &
+ \mathcal{U}(\mathfrak{h}) \\
+ \mathcal{U}(\mathfrak{g}) \arrow[swap, dotted]{urr}{\mathcal{U}(f)} & &
\end{tikzcd}
\end{center}