- Commit
- 91433815b5281e9ef117bd987b7eb3964cd40f62
- Parent
- cac93e79812075c627b313d96b77a8b7d83ad209
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Reoriented communative diagrams to avoid arrows going up
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Reoriented communative diagrams to avoid arrows going up
2 files changed, 10 insertions, 11 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/introduction.tex | 17 | 8 | 9 |
Modified | sections/mathieu.tex | 4 | 2 | 2 |
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -601,8 +601,8 @@ subalgebra. In practice this means\dots homomorphism of algebras \(\mathcal{U}(\mathfrak{g}) \to A\). \begin{center} \begin{tikzcd} - \mathcal{U}(\mathfrak{g}) \rar[dotted] & A \dar[Rightarrow, no head] \\ - \mathfrak{g} \rar[swap]{f} \uar & A + \mathfrak{g} \rar{f} \dar & A \\ + \mathcal{U}(\mathfrak{g}) \urar[dotted] & \end{tikzcd} \end{center} \end{proposition} @@ -613,8 +613,8 @@ subalgebra. In practice this means\dots \(\tilde f : T \mathfrak{g} \to A\) such that \begin{center} \begin{tikzcd} - T \mathfrak{g} \arrow[dotted]{dr}{\tilde f} & \\ - \mathfrak{g} \uar \rar[swap]{f} & A + \mathfrak{g} \dar \rar{f} & A \\ + T \mathfrak{g} \urar[swap, dotted]{\tilde f} & \end{tikzcd} \end{center} @@ -649,11 +649,10 @@ algebras \(\mathcal{U}(f) : \mathcal{U}(\mathfrak{g}) \to \mathcal{U}(\mathfrak{h})\) satisfying \begin{center} \begin{tikzcd} - \mathcal{U}(\mathfrak{g}) \arrow[dotted]{rr}{\mathcal{U}(f)} & & - \mathcal{U}(\mathfrak{h}) \dar[Rightarrow, no head] \\ - \mathfrak{g} \rar[swap]{f} \uar & - \mathfrak{h} \rar & - \mathcal{U}(\mathfrak{h}) + \mathfrak{g} \rar{f} \dar & + \mathfrak{h} \rar & + \mathcal{U}(\mathfrak{h}) \\ + \mathcal{U}(\mathfrak{g}) \arrow[swap, dotted]{urr}{\mathcal{U}(f)} & & \end{tikzcd} \end{center}
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -966,8 +966,8 @@ elements of certain subsets of \(A\) via a process known as \emph{the localization map}. \begin{center} \begin{tikzcd} - S^{-1} A \arrow[dotted]{rd} & \\ - A \uar \rar[swap]{f} & B + A \dar \rar{f} & B \\ + S^{-1} A \urar[swap, dotted] & \end{tikzcd} \end{center} \end{theorem}