- Commit
- 91c6c49f999e57ef3f96ebbc15e2696939346770
- Parent
- 032c0da6af7ee00d86287d83e0135b57f2e3f838
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Minor tweak in language
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Minor tweak in language
1 file changed, 8 insertions, 13 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/complete-reducibility.tex | 21 | 8 | 13 |
diff --git a/sections/complete-reducibility.tex b/sections/complete-reducibility.tex @@ -837,7 +837,7 @@ establish\dots \end{tikzcd} \end{center} induces a long exact sequence of the form - \begin{center} + \begin{equation}\label{eq:standard-h1-ext-seq} \begin{tikzcd} \cdots \rar[dashed] & H^1(\mathfrak{g}, N) \rar & @@ -845,19 +845,14 @@ establish\dots H^1(\mathfrak{g}, \sfrac{M}{N}) \rar[dashed] & \cdots \end{tikzcd} - \end{center} + \end{equation} - Since \(0 < \dim N, \dim \sfrac{M}{N} < \dim M\) it follows - \(H^1(\mathfrak{g}, N) = H^1(\mathfrak{g}, \sfrac{M}{N}) = 0\). The exactness - of - \begin{center} - \begin{tikzcd} - 0 \rar & H^1(\mathfrak{g}, M) \rar & 0 - \end{tikzcd} - \end{center} - then implies \(H^1(\mathfrak{g}, M) = 0\). Hence by induction in \(\dim M\) - we find \(H^1(\mathfrak{g}, M) = 0\) for all finite-dimensional \(M\). We are - done. + Since \(\dim N < \dim M\), it follows \(H^1(\mathfrak{g}, N) = 0\). In + addition, since \(\dim N > 0\), we find \(\dim \mfrac{M}{N} < \dim M\) and + thus \(H^1(\mathfrak{g}, \sfrac{M}{N}) = 0\). The exactness of + (\ref{eq:standard-h1-ext-seq}) then implies \(H^1(\mathfrak{g}, M) = 0\). + Hence by induction in \(\dim M\) we find \(H^1(\mathfrak{g}, M) = 0\) for all + finite-dimensional \(M\). We are done. \end{proof} We are now finally ready to prove\dots