- Commit
- 9608f8083486fc6fcb95a9242b96baa141e815ab
- Parent
- 01402bde32b64d270f33c945b8bd71bffb53ed68
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Finished the blueprint of the introduction
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Finished the blueprint of the introduction
1 file changed, 148 insertions, 4 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/introduction.tex | 152 | 148 | 4 |
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -23,7 +23,7 @@ for all \(X, Y \in \mathfrak{g}\). \end{definition} -\begin{example} +\begin{example}\label{ex:inclusion-alg-in-lie-alg} Given an associatice \(K\)-algebra \(A\), we can view \(A\) as a Lie algebra over \(K\) with the Lie brackets given by the commutator \([a, b] = ab - ba\). In particular, given a \(K\)-vector space \(V\) we may view the @@ -323,6 +323,24 @@ intertwiners \(V \to W\) by \(\operatorname{Hom}_{\mathfrak{g}}(V, W)\). \end{definition} +% TODO: Point out g-Mod is indeed a category + +\begin{example} + Let \(\mathfrak{g}\) be a Lie algebra and \(\mathfrak{h}\) be a subalgebra. + Given a representation \(V\) of \(\mathfrak{g}\), denote by + \(\operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} V = V\) the representation + of \(\mathfrak{h}\) where the action of \(\mathfrak{h}\) is given by + restricting the map \(\mathfrak{g} \to \mathfrak{gl}(V)\) to + \(\mathfrak{g}\). Any homomorphism of \(\mathfrak{g}\)-modules \(V \to W\) is + also a homomorphism of \(\mathfrak{h}\)-modules and this construction is + clearly functorial. + \[ + \operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} : + \mathfrak{g}\text{-}\mathbf{Mod} \to + \mathfrak{h}\text{-}\mathbf{Mod} + \] +\end{example} + \begin{definition} Given a Lie algebra \(\mathfrak{g}\) and a representation \(V\) of \(\mathfrak{g}\), a subspace \(W \subset V\) is called \emph{a @@ -334,9 +352,8 @@ Given a Lie algebra \(\mathfrak{g}\), a representation \(V\) of \(\mathfrak{g}\) and a subrepresentation \(W \subset V\), the space \(\mfrac{V}{W}\) has the natural structure of a \(\mathfrak{g}\)-module where - \[ - X (v + W) = X v + W - \] + \(X (v + W) = X v + W\). The projection \(V \to \mfrac{V}{W}\) is an + intertwiner. \end{example} \begin{example} @@ -364,3 +381,130 @@ \end{lemma} \section{The Universal Enveloping Algebra} + +\begin{definition} + Let \(\mathfrak{g}\) be a Lie algebra and \(T \mathfrak{g} = \bigoplus_n + \mathfrak{g}^{\otimes n}\) be its tensor algebra -- i.e. the free + \(K\)-algebra generated by the elements of \(\mathfrak{g}\). We call the + \(K\)-algebra \(\mathcal{U}(\mathfrak{g}) = \mfrac{T \mathfrak{g}}{I}\) + \emph{the universal enveloping algebra of \(\mathfrak{g}\)}, where \(I = ([X, + Y] - (X \otimes Y - Y \otimes X) : X, Y \in \mathfrak{g})\) is the left ideal + of \(T \mathfrak{g}\) generated by the elements \([X, Y] - (X \otimes Y - Y + \otimes X)\). +\end{definition} + +\begin{proposition} + Let \(\mathfrak{g}\) be a Lie algebra and \(A\) be an associative + \(K\)-algebra. Then every homomorphism of Lie algebras \(f : \mathfrak{g} \to + A\) -- where \(A\) is endowed with the structure of a Lie algebra as in + example~\ref{ex:inclusion-alg-in-lie-alg} -- can be uniquely extended to a + homomorphism of algebras \(\mathcal{U}(\mathfrak{g}) \to A\). + \begin{center} + \begin{tikzcd} + \mathcal{U}(\mathfrak{g}) \rar[dotted] & A \dar[Rightarrow, no head] \\ + \mathfrak{g} \rar[swap]{f} \uar & A + \end{tikzcd} + \end{center} +\end{proposition} + +% TODO: Remark this construction is functorial + +\begin{center} + \begin{tikzcd} + \mathcal{U}(\mathfrak{g}) \arrow[dotted]{rr}{\mathcal{U}(f)} & & + \mathcal{U}(\mathfrak{h}) \dar[Rightarrow, no head] \\ + \mathfrak{g} \rar[swap]{f} \uar & + \mathfrak{h} \rar & + \mathcal{U}(\mathfrak{h}) + \end{tikzcd} +\end{center} + +% TODO: Point out U is not the "inverse" of K-Alg -> K-LieAlg, but there is an +% adjunction + +\begin{corollary} + If \(\operatorname{Lie} : K\text{-}\mathbf{Alg} \to + K\text{-}\mathbf{LieAlg}\) is the functor described in + example~\ref{ex:inclusion-alg-in-lie-alg}, there is an adjunction + \(\operatorname{Lie} \vdash \mathcal{U}\). +\end{corollary} + +% TODO: Point out Hom(U(g), End(V)) ≃ Hom(g, gl(V)) + +\begin{proposition} + There is a natural equivalence of categories + \(\mathfrak{g}\text{-}\mathbf{Mod} \isoto + \mathcal{U}(\mathfrak{g})\text{-}\mathbf{Mod}\), which takes + finite-dimensional repesentations to finitely generated modules. +\end{proposition} + +\begin{example} + Let \(\mathfrak{g}\) be a Lie algebra and \(\mathfrak{h}\) be a subalgebra. + Given a representation \(V\) of \(\mathfrak{h}\), denote by + \(\operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} V\) the representation of + \(\mathfrak{h}\) corresponding to the \(\mathcal{U}(\mathfrak{h})\)-module + \(\mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(h)} V\) -- where the action + of \(\mathfrak{h}\) in \(\mathcal{U}(\mathfrak{g})\) is given by left + multiplication. Any homomorphism of \(\mathfrak{h}\)-modules \(T : V \to W\) + induces a homomorphism \(\operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} T = + \operatorname{Id} \otimes T : + \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} V \to + \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} W\) and this construction is + clearly functorial. + \[ + \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} : + \mathfrak{h}\text{-}\mathbf{Mod} \to \mathfrak{g}\text{-}\mathbf{Mod} + \] +\end{example} + +\begin{proposition} + Given a Lie algebra\(\mathfrak{g}\), a subalgebra \(\mathfrak{h} \subset + \mathfrak{g}\), a representation \(V\) of \(\mathfrak{h}\) and a + representation \(W\) of \(\mathfrak{g}\), the map + \[ + \arraycolsep=1.4pt + \begin{array}[t]{rl} + \Phi : + \operatorname{Hom}_{\mathfrak{g}}( + \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}} V, + W + ) & \to + \operatorname{Hom}_{\mathfrak{h}}( + V, + \operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} W + ) \\ + T & \mapsto + \begin{array}[t]{rl} + \Phi(T) : V & \to \operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} W \\ + v & \mapsto T (1 \otimes v) + \end{array} + \end{array} + \] + is a \(K\)-linear isomorphism. In other words, there is an adjunction + \(\operatorname{Res}_{\mathfrak{h}}^{\mathfrak{g}} \vdash + \operatorname{Ind}_{\mathfrak{h}}^{\mathfrak{g}}\). +\end{proposition} + +\begin{theorem} + Let \(G\) be a Lie group and \(\mathfrak{g}\) be its Lie algebra. Denote by + \(\operatorname{Diff}(G)^G\) the algebra of \(G\)-invariant differential + operators in \(G\) -- i.e. the algebra of all differential operators \(L : + C^\infty(G) \to C^\infty(G)\) such that \((L(f \circ \ell_g)) \circ + \ell_{g^{-1}} = L f\) for all \(f \in C^\infty(G)\) and \(g \in G\). There is + a canonical isomorphism of algebras \(\mathcal{U}(\mathfrak{g}) \isoto + \operatorname{Diff}(G)^G\). +\end{theorem} + +% TODO: Comment on the fact this holds for algebraic groups too + +% TODO: Comment on the fact that modules of invariant differential operators +% over G are precisely the same as representations of g + +\begin{theorem}[Poincaré-Birkoff-Witt] + Let \(\mathfrak{g}\) be a Lie algebra over \(K\) and \(\{X_i\}_i \subset + \mathfrak{g}\) be a basis for \(\mathfrak{g}\). Then \(\{X_{i_1} \cdot + X_{i_2} \cdots X_{i_n} : n \ge 0, i_1 \le i_2 \le \cdots \le i_n\}\) is a + basis for \(\mathcal{U}(\mathfrak{g})\). +\end{theorem} + +% TODO: The analytic proof of PBW only works for finite-dimensional algebras