- Commit
- 9e9211b9a4a50a8dd1a5d9a3e66eef78dc081ea5
- Parent
- 7b33177ac8285ec8e8898e26dccf0bb8d2514fcb
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Added a proof
Added the proof of an important theorem
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Added a proof
Added the proof of an important theorem
1 file changed, 24 insertions, 3 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/coherent-families.tex | 27 | 24 | 3 |
diff --git a/sections/coherent-families.tex b/sections/coherent-families.tex @@ -168,13 +168,34 @@ combinatorial counterpart. % TODO: Note we will prove that central characters are also invariants of % coherent families -% TODOO: Prove this -\begin{proposition}[Mathieu]\label{thm:coherent-family-has-uniq-central-char} +\begin{proposition}\label{thm:coherent-family-has-uniq-central-char} Suppose \(\lambda, \mu \in \mathfrak{h}^*\) are such that \(L(\lambda)\) and \(L(\mu)\) are both bounded and \(\mExt(L(\lambda)) \cong \mExt(L(\mu))\). - Then \(\chi_\lambda = \chi_\mu\). + Then \(\chi_\lambda = \chi_\mu\). In particular, \(\mu \in W \bullet + \lambda\). \end{proposition} +\begin{proof} + Fix \(u \in \mathcal{U}(\mathfrak{g})_0\). It is clear that + \(\operatorname{Tr}(u\!\restriction_{\mExt(L(\lambda))_\nu}) = + \operatorname{Tr}(u\!\restriction_{L(\lambda)_\nu}) = d \chi_\lambda(u)\) for + all \(\nu \in \operatorname{supp}_{\operatorname{ess}} L(\lambda)\). Since + \(\operatorname{supp}_{\operatorname{ess}} L(\lambda)\) is Zariski-dense and + the map + \(\nu \mapsto \operatorname{Tr}(u\!\restriction_{\mExt(L(\lambda))_\nu})\) + is polynomial, it follows that + \(\operatorname{Tr}(u\!\restriction_{\mExt(L(\lambda))_\nu}) = d + \chi_\lambda(u)\) for all \(\nu \in \mathfrak{h}^*\). But by the same token + \[ + d \chi_\lambda(u) + = \operatorname{Tr}(u\!\restriction_{\mExt(L(\lambda))_\nu}) + = \operatorname{Tr}(u\!\restriction_{\mExt(L(\mu))_\nu}) + = d \chi_\mu(u) + \] + for any \(\nu \in \operatorname{supp}_{\operatorname{ess}} L(\mu)\) and thus + \(\chi_\lambda(u) = \chi_\mu(u)\). +\end{proof} + % TODO: Remark that the probability of σ_β ∙ λ ∈ P+ is slight: there precisely % one element in the orbit of λ which is dominant integral, so the odds are % 1/|W ∙ λ|