- Commit
- d0cbf9ca62547857bfa820c7ae70ad7f4de098ff
- Parent
- 0904c078698220fd2d642ed7e993eb7d3b7c7be1
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Fixed a typo
The Ext functors are contravariant in the first entry
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Fixed a typo
The Ext functors are contravariant in the first entry
1 file changed, 3 insertions, 3 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/complete-reducibility.tex | 6 | 3 | 3 |
diff --git a/sections/complete-reducibility.tex b/sections/complete-reducibility.tex @@ -385,9 +385,9 @@ basic}. In fact, all we need to know is\dots \begin{theorem}\label{thm:ext-exacts-seqs}\index{\(\operatorname{Ext}\) functors} There is a sequence of bifunctors \(\operatorname{Ext}^i : - \mathfrak{g}\text{-}\mathbf{Mod} \times \mathfrak{g}\text{-}\mathbf{Mod} \to - K\text{-}\mathbf{Vect}\), \(i \ge 0\) such that, given a - \(\mathfrak{g}\)-module \(L'\), every exact sequence of + \mathfrak{g}\text{-}\mathbf{Mod}^{\operatorname{op}} \times + \mathfrak{g}\text{-}\mathbf{Mod} \to K\text{-}\mathbf{Vect}\), \(i \ge 0\) + such that, given a \(\mathfrak{g}\)-module \(L'\), every exact sequence of \(\mathfrak{g}\)-modules \begin{center} \begin{tikzcd}