lie-algebras-and-their-representations

Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules

Commit
f5e1d9a728d8325b6b6a06c3c4b4015e72db870f
Parent
1b8026a4577ff005fec4e6564d12b4fafd89ee02
Author
Pablo <pablo-escobar@riseup.net>
Date

Minor tweak in notation

Diffstat

1 file changed, 3 insertions, 3 deletions

Status File Name N° Changes Insertions Deletions
Modified sections/coherent-families.tex 6 3 3
diff --git a/sections/coherent-families.tex b/sections/coherent-families.tex
@@ -509,9 +509,9 @@ Proposition~\ref{thm:better-sl(n)-parameters}.
   We denote by \(\mathscr{B}\) the set of \(\mathfrak{sl}_n\)-sequences \(m\)
   which are \emph{not} ordered, but becomes ordered after removing one term. We
   also consider the \emph{extremal} subsets \(\mathscr{B}^+ = \{m \in
-  \mathscr{B} : (m_2, m_3, \ldots, m_n) \ \text{is ordered}\}\) and
-  \(\mathscr{B}^- = \{m \in \mathscr{B} : (m_1, m_2, \ldots, m_{n - 1}) \
-  \text{is ordered}\}\).
+  \mathscr{B} : (\widehat{m_1}, m_2, \ldots, m_n) \ \text{is ordered}\}\) and
+  \(\mathscr{B}^- = \{m \in \mathscr{B} : (m_1, \ldots, m_{n - 1},
+  \widehat{m_n}) \ \text{is ordered}\}\).
 \end{definition}
 
 % TODO: Add a picture of parts of 𝓑  for n = 3 in here