- Commit
- cefadc8bb17c118e0f69847df50e360cfdd8188a
- Parent
- 3130aaccb97b79c7b6e0e0cd9f94670bec5ac48b
- Author
- Pablo <pablo-escobar@riseup.net>
- Date
Cleaned the code for commutative diagrams
Source code for my notes on representations of semisimple Lie algebras and Olivier Mathieu's classification of simple weight modules
Cleaned the code for commutative diagrams
5 files changed, 175 insertions, 182 deletions
Status | File Name | N° Changes | Insertions | Deletions |
Modified | sections/complete-reducibility.tex | 238 | 116 | 122 |
Modified | sections/introduction.tex | 18 | 9 | 9 |
Modified | sections/mathieu.tex | 55 | 27 | 28 |
Modified | sections/semisimple-algebras.tex | 22 | 11 | 11 |
Modified | sections/sl2-sl3.tex | 24 | 12 | 12 |
diff --git a/sections/complete-reducibility.tex b/sections/complete-reducibility.tex @@ -132,10 +132,10 @@ unclear, the following results should clear things up. We begin by \(\textbf{(i)} \implies \textbf{(ii)}\). Let \begin{center} \begin{tikzcd} - 0 \arrow{r} & - N \arrow{r}{f} & - M \arrow{r}{g} & - L \arrow{r} & + 0 \rar & + N \rar{f} & + M \rar{g} & + L \rar & 0 \end{tikzcd} \end{center} @@ -163,10 +163,10 @@ unclear, the following results should clear things up. satisfying \begin{center} \begin{tikzcd} - 0 \arrow{r} & - N \arrow{r}{f} & - M \arrow{r}{g} \arrow[bend left=30]{l}{s} & - L \arrow{r} & + 0 \rar & + N \rar{f} & + M \rar{g} \lar[bend left=30]{s} & + L \rar & 0 \end{tikzcd} \end{center} @@ -176,10 +176,10 @@ unclear, the following results should clear things up. have an exact sequence \begin{center} \begin{tikzcd} - 0 \arrow{r} & - N \arrow{r} & - M \arrow{r} & - \mfrac{M}{N} \arrow{r} & + 0 \rar & + N \rar & + M \rar & + \mfrac{M}{N} \rar & 0 \end{tikzcd} \end{center} @@ -390,62 +390,62 @@ basic}. In fact, all we need to know is\dots \(\mathfrak{g}\)-modules \begin{center} \begin{tikzcd} - 0 \arrow{r} & N \arrow{r}{f} & M \arrow{r}{g} & L \arrow{r} & 0 + 0 \rar & N \rar{f} & M \rar{g} & L \rar & 0 \end{tikzcd} \end{center} induces long exact sequences \begin{center} \begin{tikzcd} - 0 \arrow[r] & + 0 \rar & \operatorname{Hom}_{\mathfrak{g}}(L', N) - \arrow[r, "f \circ -"', swap]\ar[draw=none]{d}[name=X, anchor=center]{} & - \operatorname{Hom}_{\mathfrak{g}}(L', M) \arrow[r, "g \circ -"', swap] & + \rar[swap]{f \circ -}\ar[draw=none]{d}[name=X, anchor=center]{} & + \operatorname{Hom}_{\mathfrak{g}}(L', M) \rar[swap]{g \circ -} & \operatorname{Hom}_{\mathfrak{g}}(L', L) \ar[rounded corners, - to path={ -- ([xshift=2ex]\tikztostart.east) - |- (X.center) \tikztonodes - -| ([xshift=-2ex]\tikztotarget.west) - -- (\tikztotarget)}]{dll}[at end]{} \\ & + to path={ -- ([xshift=2ex]\tikztostart.east) + |- (X.center) \tikztonodes + -| ([xshift=-2ex]\tikztotarget.west) + -- (\tikztotarget)}]{dll}[at end]{} \\ & \operatorname{Ext}^1(L', N) - \arrow[r]\ar[draw=none]{d}[name=Y, anchor=center]{} & - \operatorname{Ext}^1(L', M) \arrow[r] & + \rar\ar[draw=none]{d}[name=Y, anchor=center]{} & + \operatorname{Ext}^1(L', M) \rar & \operatorname{Ext}^1(L', L) \ar[rounded corners, - to path={ -- ([xshift=2ex]\tikztostart.east) - |- (Y.center) \tikztonodes - -| ([xshift=-2ex]\tikztotarget.west) - -- (\tikztotarget)}]{dll}[at end]{} \\ & - \operatorname{Ext}^2(L', N) \arrow[r] & - \operatorname{Ext}^2(L', M) \arrow[r] & - \operatorname{Ext}^2(L', L) \arrow[r, dashed] & + to path={ -- ([xshift=2ex]\tikztostart.east) + |- (Y.center) \tikztonodes + -| ([xshift=-2ex]\tikztotarget.west) + -- (\tikztotarget)}]{dll}[at end]{} \\ & + \operatorname{Ext}^2(L', N) \rar & + \operatorname{Ext}^2(L', M) \rar & + \operatorname{Ext}^2(L', L) \rar[dashed] & \cdots \end{tikzcd} \end{center} and \begin{center} \begin{tikzcd} - 0 \arrow[r] & + 0 \rar & \operatorname{Hom}_{\mathfrak{g}}(L, L') - \arrow[r, "- \circ g"', swap]\ar[draw=none]{d}[name=X, anchor=center]{} & - \operatorname{Hom}_{\mathfrak{g}}(M, L') \arrow[r, "- \circ f"', swap] & + \rar[swap]{- \circ g}\ar[draw=none]{d}[name=X, anchor=center]{} & + \operatorname{Hom}_{\mathfrak{g}}(M, L') \rar[swap]{- \circ f} & \operatorname{Hom}_{\mathfrak{g}}(N, L') \ar[rounded corners, - to path={ -- ([xshift=2ex]\tikztostart.east) - |- (X.center) \tikztonodes - -| ([xshift=-2ex]\tikztotarget.west) - -- (\tikztotarget)}]{dll}[at end]{} \\ & + to path={ -- ([xshift=2ex]\tikztostart.east) + |- (X.center) \tikztonodes + -| ([xshift=-2ex]\tikztotarget.west) + -- (\tikztotarget)}]{dll}[at end]{} \\ & \operatorname{Ext}^1(L, L') - \arrow[r]\ar[draw=none]{d}[name=Y, anchor=center]{} & - \operatorname{Ext}^1(M, L') \arrow[r] & + \rar\ar[draw=none]{d}[name=Y, anchor=center]{} & + \operatorname{Ext}^1(M, L') \rar & \operatorname{Ext}^1(N, L') \ar[rounded corners, - to path={ -- ([xshift=2ex]\tikztostart.east) - |- (Y.center) \tikztonodes - -| ([xshift=-2ex]\tikztotarget.west) - -- (\tikztotarget)}]{dll}[at end]{} \\ & - \operatorname{Ext}^2(L, L') \arrow[r] & - \operatorname{Ext}^2(M, L') \arrow[r] & - \operatorname{Ext}^2(N, L') \arrow[r, dashed] & + to path={ -- ([xshift=2ex]\tikztostart.east) + |- (Y.center) \tikztonodes + -| ([xshift=-2ex]\tikztotarget.west) + -- (\tikztotarget)}]{dll}[at end]{} \\ & + \operatorname{Ext}^2(L, L') \rar & + \operatorname{Ext}^2(M, L') \rar & + \operatorname{Ext}^2(N, L') \rar[dashed] & \cdots \end{tikzcd} \end{center} @@ -457,7 +457,7 @@ basic}. In fact, all we need to know is\dots isomorphism classes of short exact sequences \begin{center} \begin{tikzcd} - 0 \arrow{r} & N \arrow{r} & M \arrow{r} & L \arrow{r} & 0 + 0 \rar & N \rar & M \rar & L \rar & 0 \end{tikzcd} \end{center} @@ -511,32 +511,33 @@ This implies\dots Every short exact sequence of \(\mathfrak{g}\)-modules \begin{center} \begin{tikzcd} - 0 \arrow{r} & N \arrow{r}{f} & M \arrow{r}{g} & L \arrow{r} & 0 + 0 \rar & N \rar{f} & M \rar{g} & L \rar & 0 \end{tikzcd} \end{center} induces a long exact sequence \begin{center} \begin{tikzcd} - 0 \arrow[r] & - N^{\mathfrak{g}} \arrow[r, "f"', swap]\ar[draw=none]{d}[name=X, anchor=center]{} & - M^{\mathfrak{g}} \arrow[r, "g"', swap] & + 0 \rar & + N^{\mathfrak{g}} \rar[swap]{f} + \ar[draw=none]{d}[name=X, anchor=center]{} & + M^{\mathfrak{g}} \rar[swap]{g} & L^{\mathfrak{g}} \ar[rounded corners, - to path={ -- ([xshift=2ex]\tikztostart.east) - |- (X.center) \tikztonodes - -| ([xshift=-2ex]\tikztotarget.west) - -- (\tikztotarget)}]{dll}[at end]{} \\ & - H^1(\mathfrak{g}, N) \arrow[r]\ar[draw=none]{d}[name=Y, anchor=center]{} & - H^1(\mathfrak{g}, M) \arrow[r] & + to path={ -- ([xshift=2ex]\tikztostart.east) + |- (X.center) \tikztonodes + -| ([xshift=-2ex]\tikztotarget.west) + -- (\tikztotarget)}]{dll}[at end]{} \\ & + H^1(\mathfrak{g}, N) \rar\ar[draw=none]{d}[name=Y, anchor=center]{} & + H^1(\mathfrak{g}, M) \rar & H^1(\mathfrak{g}, L) \ar[rounded corners, - to path={ -- ([xshift=2ex]\tikztostart.east) - |- (Y.center) \tikztonodes - -| ([xshift=-2ex]\tikztotarget.west) - -- (\tikztotarget)}]{dll}[at end]{} \\ & - H^2(\mathfrak{g}, N) \arrow[r] & - H^2(\mathfrak{g}, M) \arrow[r] & - H^2(\mathfrak{g}, L) \arrow[r, dashed] & + to path={ -- ([xshift=2ex]\tikztostart.east) + |- (Y.center) \tikztonodes + -| ([xshift=-2ex]\tikztotarget.west) + -- (\tikztotarget)}]{dll}[at end]{} \\ & + H^2(\mathfrak{g}, N) \rar & + H^2(\mathfrak{g}, M) \rar & + H^2(\mathfrak{g}, L) \rar[dashed] & \cdots \end{tikzcd} \end{center} @@ -546,19 +547,16 @@ This implies\dots We have an isomorphism of sequences \begin{center} \begin{tikzcd} - 0 \arrow{r} & - \operatorname{Hom}_{\mathfrak{g}}(K, N) - \arrow{r}{f \circ -} \arrow{d} & - \operatorname{Hom}_{\mathfrak{g}}(K, M) - \arrow{r}{g \circ -} \arrow{d} & - \operatorname{Hom}_{\mathfrak{g}}(K, L) \arrow{r} \arrow{d} & - H^1(\mathfrak{g}, N) \arrow[dashed]{r} \arrow[Rightarrow, no head]{d} & - \cdots \\ - 0 \arrow{r} & - N^{\mathfrak{g}} \arrow[swap]{r}{f} & - M^{\mathfrak{g}} \arrow[swap]{r}{g} & - L^{\mathfrak{g}} \arrow{r} & - H^1(\mathfrak{g}, N) \arrow[dashed]{r} & + 0 \rar & + \operatorname{Hom}_{\mathfrak{g}}(K, N) \rar{f \circ -} \dar & + \operatorname{Hom}_{\mathfrak{g}}(K, M) \rar{g \circ -} \dar & + \operatorname{Hom}_{\mathfrak{g}}(K, L) \rar \dar & + H^1(\mathfrak{g}, N) \rar[dashed]\dar[Rightarrow, no head] & \cdots \\ + 0 \rar & + N^{\mathfrak{g}} \rar[swap]{f} & + M^{\mathfrak{g}} \rar[swap]{g} & + L^{\mathfrak{g}} \rar & + H^1(\mathfrak{g}, N) \rar[dashed] & \cdots \end{tikzcd} \end{center} @@ -581,7 +579,7 @@ Explicitly\dots L))\) and isomorphism classes of short exact sequences \begin{center} \begin{tikzcd} - 0 \arrow{r} & N \arrow{r} & M \arrow{r} & L \arrow{r} & 0 + 0 \rar & N \rar & M \rar & L \rar & 0 \end{tikzcd} \end{center} \end{theorem} @@ -590,11 +588,11 @@ For the readers already familiar with homological algebra: this correspondence can be computed very concretely by considering a canonical acyclic resolution \begin{center} \begin{tikzcd} - \cdots \arrow[dashed]{r} & - \wedge^3 \mathfrak{g} \rar & - \wedge^2 \mathfrak{g} \rar & - \mathfrak{g} \rar & - K \rar & + \cdots \rar[dashed] & + \wedge^3 \mathfrak{g} \rar & + \wedge^2 \mathfrak{g} \rar & + \mathfrak{g} \rar & + K \rar & 0 \end{tikzcd} \end{center} @@ -790,16 +788,16 @@ establish\dots exact sequence \begin{center} \begin{tikzcd} - 0 \arrow{r} & N \arrow{r} & M \arrow{r} & \sfrac{M}{N} \arrow{r} & 0 + 0 \rar & N \rar & M \rar & \sfrac{M}{N} \rar & 0 \end{tikzcd} \end{center} induces a long exact sequence of the form \begin{center} \begin{tikzcd} - \cdots \arrow[dashed]{r} & - H^1(\mathfrak{g}, N) \arrow{r} & - H^1(\mathfrak{g}, M) \arrow{r} & - H^1(\mathfrak{g}, \sfrac{M}{N}) \arrow[dashed]{r} & + \cdots \rar[dashed] & + H^1(\mathfrak{g}, N) \rar & + H^1(\mathfrak{g}, M) \rar & + H^1(\mathfrak{g}, \sfrac{M}{N}) \rar[dashed] & \cdots \end{tikzcd} \end{center} @@ -809,9 +807,7 @@ establish\dots of \begin{center} \begin{tikzcd} - 0 \arrow{r} & - H^1(\mathfrak{g}, M) \arrow{r} & - 0 + 0 \rar & H^1(\mathfrak{g}, M) \rar & 0 \end{tikzcd} \end{center} then implies \(H^1(\mathfrak{g}, M) = 0\). Hence by induction in \(\dim V\) @@ -830,7 +826,7 @@ We are now finally ready to prove\dots Let \begin{equation}\label{eq:generict-exact-sequence} \begin{tikzcd} - 0 \arrow{r} & N \arrow{r}{f} & M \arrow{r}{g} & L \arrow{r} & 0 + 0 \rar & N \rar{f} & M \rar{g} & L \rar & 0 \end{tikzcd} \end{equation} be a short exact sequence of finite-dimensional \(\mathfrak{g}\)-modules. We @@ -839,10 +835,11 @@ We are now finally ready to prove\dots We have an exact sequence \begin{center} \begin{tikzcd} - 0 \arrow{r} & - \operatorname{Hom}(L, N) \arrow{r}{f \circ -} & - \operatorname{Hom}(L, M) \arrow{r}{g \circ -} & - \operatorname{Hom}(L, L) \arrow{r} & 0 + 0 \rar & + \operatorname{Hom}(L, N) \rar{f \circ -} & + \operatorname{Hom}(L, M) \rar{g \circ -} & + \operatorname{Hom}(L, L) \rar & + 0 \end{tikzcd} \end{center} of vector spaces. Since all maps involved are \(\mathfrak{g}\)-homomorphisms, @@ -850,18 +847,19 @@ We are now finally ready to prove\dots long exact sequence \begin{center} \begin{tikzcd} - 0 \arrow[r] & - \operatorname{Hom}(L, N)^{\mathfrak{g}} \arrow[r, "f \circ -"', swap]\ar[draw=none]{d}[name=X, anchor=center]{} & - \operatorname{Hom}(L, M)^{\mathfrak{g}} \arrow[r, "g \circ -"', swap] & + 0 \rar & + \operatorname{Hom}(L, N)^{\mathfrak{g}} \rar[swap]{f \circ -} + \ar[draw=none]{d}[name=X, anchor=center]{} & + \operatorname{Hom}(L, M)^{\mathfrak{g}} \rar[swap]{g \circ -} & \operatorname{Hom}(L, L)^{\mathfrak{g}} \ar[rounded corners, - to path={ -- ([xshift=2ex]\tikztostart.east) - |- (X.center) \tikztonodes - -| ([xshift=-2ex]\tikztotarget.west) - -- (\tikztotarget)}]{dll}[at end]{} \\ & - H^1(\mathfrak{g}, \operatorname{Hom}(L, N)) \arrow[r] & - H^1(\mathfrak{g}, \operatorname{Hom}(L, M)) \arrow[r] & - H^1(\mathfrak{g}, \operatorname{Hom}(L, L)) \arrow[r, dashed] & + to path={ -- ([xshift=2ex]\tikztostart.east) + |- (X.center) \tikztonodes + -| ([xshift=-2ex]\tikztotarget.west) + -- (\tikztotarget)}]{dll}[at end]{} \\ & + H^1(\mathfrak{g}, \operatorname{Hom}(L, N)) \rar & + H^1(\mathfrak{g}, \operatorname{Hom}(L, M)) \rar & + H^1(\mathfrak{g}, \operatorname{Hom}(L, L)) \rar[dashed] & \cdots \end{tikzcd} \end{center} @@ -870,10 +868,10 @@ We are now finally ready to prove\dots have an exact sequence \begin{center} \begin{tikzcd} - 0 \arrow{r} & - \operatorname{Hom}(L, N)^{\mathfrak{g}} \arrow{r}{f \circ -} & - \operatorname{Hom}(L, M)^{\mathfrak{g}} \arrow{r}{g \circ -} & - \operatorname{Hom}(L, L)^{\mathfrak{g}} \arrow{r} & + 0 \rar & + \operatorname{Hom}(L, N)^{\mathfrak{g}} \rar{f \circ -} & + \operatorname{Hom}(L, M)^{\mathfrak{g}} \rar{g \circ -} & + \operatorname{Hom}(L, L)^{\mathfrak{g}} \rar & 0 \end{tikzcd} \end{center} @@ -894,10 +892,10 @@ We are now finally ready to prove\dots We thus have a short exact sequence \begin{center} \begin{tikzcd} - 0 \arrow{r} & - \operatorname{Hom}_{\mathfrak{g}}(L, N) \arrow{r}{f \circ -} & - \operatorname{Hom}_{\mathfrak{g}}(L, M) \arrow{r}{g \circ -} & - \operatorname{Hom}_{\mathfrak{g}}(L, L) \arrow{r} & + 0 \rar & + \operatorname{Hom}_{\mathfrak{g}}(L, N) \rar{f \circ -} & + \operatorname{Hom}_{\mathfrak{g}}(L, M) \rar{g \circ -} & + \operatorname{Hom}_{\mathfrak{g}}(L, L) \rar & 0 \end{tikzcd} \end{center} @@ -906,11 +904,7 @@ We are now finally ready to prove\dots such that \(g \circ s : L \to L\) is the identity operator. In other words \begin{center} \begin{tikzcd} - 0 \arrow{r} & - N \arrow{r}{f} & - M \arrow{r}{g} & - L \arrow{r} \arrow[bend left]{l}{s} & - 0 + 0 \rar & N \rar{f} & M \rar{g} & L \rar \lar[bend left]{s} & 0 \end{tikzcd} \end{center} is a splitting of (\ref{eq:generict-exact-sequence}). @@ -932,10 +926,10 @@ semisimple -- \(\mathfrak{g}\), to a certain extent, by considering the exact sequence \begin{center} \begin{tikzcd} - 0 \arrow{r} & - \mathfrak{rad}(\mathfrak{g}) \arrow{r} & - \mathfrak{g} \arrow{r} & - \mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})} \arrow{r} & + 0 \rar & + \mathfrak{rad}(\mathfrak{g}) \rar & + \mathfrak{g} \rar & + \mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})} \rar & 0 \end{tikzcd} \end{center}
diff --git a/sections/introduction.tex b/sections/introduction.tex @@ -347,7 +347,7 @@ There is also a natural analogue of quotients. \mfrac{\mathfrak{g}}{\mathfrak{a}}\). \begin{center} \begin{tikzcd} - \mathfrak{g} \rar{f} \dar & \mathfrak{h} \\ + \mathfrak{g} \rar{f} \dar & \mathfrak{h} \\ \mfrac{\mathfrak{g}}{\mathfrak{a}} \arrow[dotted]{ur} & \end{tikzcd} \end{center} @@ -552,8 +552,8 @@ Notice there is a canonical homomorphism \(\mathfrak{g} \to \mathcal{U}(\mathfrak{g})\) given by the composition \begin{center} \begin{tikzcd} - \mathfrak{g} \rar & - T \mathfrak{g} \rar & + \mathfrak{g} \rar & + T \mathfrak{g} \rar & \mfrac{T \mathfrak{g}}{I} = \mathcal{U}(\mathfrak{g}) \end{tikzcd} \end{center} @@ -588,8 +588,8 @@ subalgebra. In practice this means\dots \(\tilde f : T \mathfrak{g} \to A\) such that \begin{center} \begin{tikzcd} - T \mathfrak{g} \arrow[dotted]{dr}{\tilde f} & \\ - \mathfrak{g} \uar \rar[swap]{f} & A + T \mathfrak{g} \arrow[dotted]{dr}{\tilde f} & \\ + \mathfrak{g} \uar \rar[swap]{f} & A \end{tikzcd} \end{center} @@ -624,10 +624,10 @@ algebras \(\mathcal{U}(f) : \mathcal{U}(\mathfrak{g}) \to \mathcal{U}(\mathfrak{h})\) satisfying \begin{center} \begin{tikzcd} - \mathcal{U}(\mathfrak{g}) \arrow[dotted]{rr}{\mathcal{U}(f)} & & - \mathcal{U}(\mathfrak{h}) \dar[Rightarrow, no head] \\ - \mathfrak{g} \rar[swap]{f} \uar & - \mathfrak{h} \rar & + \mathcal{U}(\mathfrak{g}) \arrow[dotted]{rr}{\mathcal{U}(f)} & & + \mathcal{U}(\mathfrak{h}) \dar[Rightarrow, no head] \\ + \mathfrak{g} \rar[swap]{f} \uar & + \mathfrak{h} \rar & \mathcal{U}(\mathfrak{h}) \end{tikzcd} \end{center}
diff --git a/sections/mathieu.tex b/sections/mathieu.tex @@ -94,13 +94,11 @@ to the case it holds. This brings us to the following definition. \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{M}{N}\) and the diagram \begin{center} \begin{tikzcd} - M_\lambda \arrow{d} \arrow{r}{\pi} & - \left(\mfrac{M}{N}\right)_\lambda \arrow{d} \\ + M_\lambda \dar \rar {\pi} & + \left(\mfrac{M}{N}\right)_\lambda \dar \\ \mfrac{\mathcal{U}(\mathfrak{h})}{I_\lambda} - \otimes_{\mathcal{U}(\mathfrak{h})} M - \arrow[swap]{r}{\operatorname{id} \otimes \pi} & - \mfrac{\mathcal{U}(\mathfrak{h})}{I_\lambda} - \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{M}{N} + \otimes_{\mathcal{U}(\mathfrak{h})} M \rar [swap]{\operatorname{id} \otimes \pi} & + \mfrac{\mathcal{U}(\mathfrak{h})}{I_\lambda} \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{M}{N} \end{tikzcd} \end{center} commutes, so that the projection \(M_\lambda \to @@ -210,7 +208,8 @@ we can see that \(M\) has the natural structure of a a reductive algebra. \begin{center} \begin{tikzcd} - \mathfrak{p} \rar \dar & \mathfrak{gl}(M) \\ + \mathfrak{p} \rar \dar & + \mathfrak{gl}(M) \\ \mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})} \arrow[dotted]{ur} & \end{tikzcd} \end{center} @@ -377,9 +376,9 @@ x^{-1}])\) we can give \(\varphi_\lambda K[x, x^{-1}]\) the structure of an \(\mathfrak{sl}_2(K)\)-module. Diagrammatically, we have \begin{center} \begin{tikzcd} - \mathcal{U}(\mathfrak{sl}_2(K)) \rar & + \mathcal{U}(\mathfrak{sl}_2(K)) \rar & \operatorname{Diff}(K[x, x^{-1}]) \rar{\varphi_\lambda} & - \operatorname{Diff}(K[x, x^{-1}]) \rar & + \operatorname{Diff}(K[x, x^{-1}]) \rar & \operatorname{End}(K[x, x^{-1}]) \end{tikzcd}, \end{center} @@ -774,10 +773,10 @@ deemed informative enough to be included in here, but see the proof of Lemma follows from the commutativity of \begin{center} \begin{tikzcd} - \mathcal{U}(\mathfrak{g})_0 \arrow{r} \arrow{d} & - \mathcal{U}(\mathfrak{g})_0^* \\ - \operatorname{End}(\mathcal{M}_\lambda) \arrow{r}{\sim} & - \operatorname{End}(\mathcal{M}_\lambda)^* \arrow{u} + \mathcal{U}(\mathfrak{g})_0 \rar \dar & + \mathcal{U}(\mathfrak{g})_0^* \\ + \operatorname{End}(\mathcal{M}_\lambda) \rar{\sim} & + \operatorname{End}(\mathcal{M}_\lambda)^* \uar \end{tikzcd}, \end{center} where the map \(\mathcal{U}(\mathfrak{g})_0 \to @@ -837,9 +836,9 @@ deemed informative enough to be included in here, but see the proof of Lemma commutativity of \begin{center} \begin{tikzcd} - V \arrow{r} \arrow{d} & V^* \\ - \operatorname{End}(\mathcal{M}_\lambda) \arrow{r}{\sim} & - \operatorname{End}(\mathcal{M}_\lambda)^* \arrow{u} + V \rar \dar & V^* \\ + \operatorname{End}(\mathcal{M}_\lambda) \rar{\sim} & + \operatorname{End}(\mathcal{M}_\lambda)^* \uar \end{tikzcd} \end{center} then implies \(\operatorname{rank} B_\lambda\!\restriction_V = d^2\). In @@ -849,9 +848,9 @@ deemed informative enough to be included in here, but see the proof of Lemma \(V\), then the commutativity of \begin{center} \begin{tikzcd} - V \arrow{r} \arrow{d} & V^* \\ - \mathcal{U}(\mathfrak{g})_0 \arrow{r} & - \mathcal{U}(\mathfrak{g})_0^* \arrow{u} + V \rar \dar & V^* \\ + \mathcal{U}(\mathfrak{g})_0 \rar & + \mathcal{U}(\mathfrak{g})_0^* \uar \end{tikzcd} \end{center} implies \(\operatorname{rank} B_\lambda \ge d^2\), which goes to show @@ -897,13 +896,13 @@ by translating between weight spaced using \(f\) and \(f^{-1}\) -- here inverse of the action of \(f\) on \(K[x, x^{-1}]\). \begin{center} \begin{tikzcd} - \cdots \arrow[bend left=60]{r}{f^{-1}} - & K x^{-2} \arrow[bend left=60]{r}{f^{-1}} \arrow[bend left=60]{l}{f} - & K x^{-1} \arrow[bend left=60]{r}{f^{-1}} \arrow[bend left=60]{l}{f} - & K \arrow[bend left=60]{r}{f^{-1}} \arrow[bend left=60]{l}{f} - & K x \arrow[bend left=60]{r}{f^{-1}} \arrow[bend left=60]{l}{f} - & K x^2 \arrow[bend left=60]{r}{f^{-1}} \arrow[bend left=60]{l}{f} - & \cdots \arrow[bend left=60]{l}{f} + \cdots \rar[bend left=60]{f^{-1}} + & K x^{-2} \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} + & K x^{-1} \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} + & K \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} + & K x \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} + & K x^2 \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f} + & \cdots \lar[bend left=60]{f} \end{tikzcd} \end{center} @@ -949,8 +948,8 @@ elements of certain subsets of \(A\) via a process known as \emph{the localization map}. \begin{center} \begin{tikzcd} - S^{-1} A \arrow[dotted]{rd} & \\ - A \arrow{u} \arrow[swap]{r}{f} & B + S^{-1} A \arrow[dotted]{rd} & \\ + A \uar \rar[swap]{f} & B \end{tikzcd} \end{center} \end{theorem}
diff --git a/sections/semisimple-algebras.tex b/sections/semisimple-algebras.tex @@ -804,12 +804,12 @@ Moreover, we find\dots (\ref{eq:sl2-verma-formulas}). Visually, \begin{center} \begin{tikzcd} - \cdots \arrow[bend left=60]{r}{-10} - & M(\lambda)_{-6} \arrow[bend left=60]{r}{-4} \arrow[bend left=60]{l}{1} - & M(\lambda)_{-4} \arrow[bend left=60]{r}{0} \arrow[bend left=60]{l}{1} - & M(\lambda)_{-2} \arrow[bend left=60]{r}{2} \arrow[bend left=60]{l}{1} - & M(\lambda)_0 \arrow[bend left=60]{r}{2} \arrow[bend left=60]{l}{1} - & M(\lambda)_2 \arrow[bend left=60]{l}{1} + \cdots \rar[bend left=60]{-10} + & M(\lambda)_{-6} \rar[bend left=60]{-4} \lar[bend left=60]{1} + & M(\lambda)_{-4} \rar[bend left=60]{0} \lar[bend left=60]{1} + & M(\lambda)_{-2} \rar[bend left=60]{2} \lar[bend left=60]{1} + & M(\lambda)_0 \rar[bend left=60]{2} \lar[bend left=60]{1} + & M(\lambda)_2 \lar[bend left=60]{1} \end{tikzcd} \end{center} where \(M(\lambda)_{2 - 2 k} = K f^k \cdot m^+\). Here the top arrows @@ -958,11 +958,11 @@ non-dominant \(\lambda \in P\). While \(\lambda\) is always a maximal weight of action of \(\mathfrak{g}\) on \(M(\lambda)\) is given by \begin{center} \begin{tikzcd} - \cdots \arrow[bend left=60]{r}{-20} - & M(\lambda)_{-8} \arrow[bend left=60]{r}{-12} \arrow[bend left=60]{l}{1} - & M(\lambda)_{-6} \arrow[bend left=60]{r}{-6} \arrow[bend left=60]{l}{1} - & M(\lambda)_{-4} \arrow[bend left=60]{r}{-2} \arrow[bend left=60]{l}{1} - & M(\lambda)_{-2} \arrow[bend left=60]{l}{1} + \cdots \rar[bend left=60]{-20} + & M(\lambda)_{-8} \rar[bend left=60]{-12} \lar[bend left=60]{1} + & M(\lambda)_{-6} \rar[bend left=60]{-6} \lar[bend left=60]{1} + & M(\lambda)_{-4} \rar[bend left=60]{-2} \lar[bend left=60]{1} + & M(\lambda)_{-2} \lar[bend left=60]{1} \end{tikzcd}, \end{center} so we can see that \(M(\lambda)\) has no proper submodules. Verma modules can
diff --git a/sections/sl2-sl3.tex b/sections/sl2-sl3.tex @@ -49,11 +49,11 @@ In other words, \(e\) sends an element of \(M_\lambda\) to an element of Visually, we may draw \begin{center} \begin{tikzcd} - \cdots \arrow[bend left=60]{r} - & M_{\lambda - 2} \arrow[bend left=60]{r}{e} \arrow[bend left=60]{l} - & M_{\lambda} \arrow[bend left=60]{r}{e} \arrow[bend left=60]{l}{f} - & M_{\lambda + 2} \arrow[bend left=60]{r} \arrow[bend left=60]{l}{f} - & \cdots \arrow[bend left=60]{l} + \cdots \rar[bend left=60] & + M_{\lambda - 2} \rar[bend left=60]{e} \lar[bend left=60] & + M_{\lambda} \rar[bend left=60]{e} \lar[bend left=60]{f} & + M_{\lambda + 2} \rar[bend left=60] \lar[bend left=60]{f} & + \cdots \lar[bend left=60] \end{tikzcd} \end{center} @@ -182,13 +182,13 @@ self-evident: we have just provided a complete description of the action of Visually, the situation it thus \begin{center} \begin{tikzcd} - M_{-\lambda} \rar[bend left=60]{e} - & M_{- \lambda + 2} \rar[bend left=60]{e} \lar[bend left=60]{f} - & M_{- \lambda + 4} \rar[bend left=60] \lar[bend left=60]{f} - & \cdots \rar[bend left=60] \lar[bend left=60] - & M_{\lambda - 4} \rar[bend left=60]{e} \lar[bend left=60] - & M_{\lambda - 2} \rar[bend left=60]{e} \lar[bend left=60]{f} - & M_\lambda \lar[bend left=60]{f} + M_{-\lambda} \rar[bend left=60]{e} & + M_{- \lambda + 2} \rar[bend left=60]{e} \lar[bend left=60]{f} & + M_{- \lambda + 4} \rar[bend left=60] \lar[bend left=60]{f} & + \cdots \rar[bend left=60] \lar[bend left=60] & + M_{\lambda - 4} \rar[bend left=60]{e} \lar[bend left=60] & + M_{\lambda - 2} \rar[bend left=60]{e} \lar[bend left=60]{f} & + M_\lambda \lar[bend left=60]{f} \end{tikzcd} \end{center}