diff --git a/sections/complete-reducibility.tex b/sections/complete-reducibility.tex
@@ -132,10 +132,10 @@ unclear, the following results should clear things up.
We begin by \(\textbf{(i)} \implies \textbf{(ii)}\). Let
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- N \arrow{r}{f} &
- M \arrow{r}{g} &
- L \arrow{r} &
+ 0 \rar &
+ N \rar{f} &
+ M \rar{g} &
+ L \rar &
0
\end{tikzcd}
\end{center}
@@ -163,10 +163,10 @@ unclear, the following results should clear things up.
satisfying
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- N \arrow{r}{f} &
- M \arrow{r}{g} \arrow[bend left=30]{l}{s} &
- L \arrow{r} &
+ 0 \rar &
+ N \rar{f} &
+ M \rar{g} \lar[bend left=30]{s} &
+ L \rar &
0
\end{tikzcd}
\end{center}
@@ -176,10 +176,10 @@ unclear, the following results should clear things up.
have an exact sequence
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- N \arrow{r} &
- M \arrow{r} &
- \mfrac{M}{N} \arrow{r} &
+ 0 \rar &
+ N \rar &
+ M \rar &
+ \mfrac{M}{N} \rar &
0
\end{tikzcd}
\end{center}
@@ -390,62 +390,62 @@ basic}. In fact, all we need to know is\dots
\(\mathfrak{g}\)-modules
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} & N \arrow{r}{f} & M \arrow{r}{g} & L \arrow{r} & 0
+ 0 \rar & N \rar{f} & M \rar{g} & L \rar & 0
\end{tikzcd}
\end{center}
induces long exact sequences
\begin{center}
\begin{tikzcd}
- 0 \arrow[r] &
+ 0 \rar &
\operatorname{Hom}_{\mathfrak{g}}(L', N)
- \arrow[r, "f \circ -"', swap]\ar[draw=none]{d}[name=X, anchor=center]{} &
- \operatorname{Hom}_{\mathfrak{g}}(L', M) \arrow[r, "g \circ -"', swap] &
+ \rar[swap]{f \circ -}\ar[draw=none]{d}[name=X, anchor=center]{} &
+ \operatorname{Hom}_{\mathfrak{g}}(L', M) \rar[swap]{g \circ -} &
\operatorname{Hom}_{\mathfrak{g}}(L', L)
\ar[rounded corners,
- to path={ -- ([xshift=2ex]\tikztostart.east)
- |- (X.center) \tikztonodes
- -| ([xshift=-2ex]\tikztotarget.west)
- -- (\tikztotarget)}]{dll}[at end]{} \\ &
+ to path={ -- ([xshift=2ex]\tikztostart.east)
+ |- (X.center) \tikztonodes
+ -| ([xshift=-2ex]\tikztotarget.west)
+ -- (\tikztotarget)}]{dll}[at end]{} \\ &
\operatorname{Ext}^1(L', N)
- \arrow[r]\ar[draw=none]{d}[name=Y, anchor=center]{} &
- \operatorname{Ext}^1(L', M) \arrow[r] &
+ \rar\ar[draw=none]{d}[name=Y, anchor=center]{} &
+ \operatorname{Ext}^1(L', M) \rar &
\operatorname{Ext}^1(L', L)
\ar[rounded corners,
- to path={ -- ([xshift=2ex]\tikztostart.east)
- |- (Y.center) \tikztonodes
- -| ([xshift=-2ex]\tikztotarget.west)
- -- (\tikztotarget)}]{dll}[at end]{} \\ &
- \operatorname{Ext}^2(L', N) \arrow[r] &
- \operatorname{Ext}^2(L', M) \arrow[r] &
- \operatorname{Ext}^2(L', L) \arrow[r, dashed] &
+ to path={ -- ([xshift=2ex]\tikztostart.east)
+ |- (Y.center) \tikztonodes
+ -| ([xshift=-2ex]\tikztotarget.west)
+ -- (\tikztotarget)}]{dll}[at end]{} \\ &
+ \operatorname{Ext}^2(L', N) \rar &
+ \operatorname{Ext}^2(L', M) \rar &
+ \operatorname{Ext}^2(L', L) \rar[dashed] &
\cdots
\end{tikzcd}
\end{center}
and
\begin{center}
\begin{tikzcd}
- 0 \arrow[r] &
+ 0 \rar &
\operatorname{Hom}_{\mathfrak{g}}(L, L')
- \arrow[r, "- \circ g"', swap]\ar[draw=none]{d}[name=X, anchor=center]{} &
- \operatorname{Hom}_{\mathfrak{g}}(M, L') \arrow[r, "- \circ f"', swap] &
+ \rar[swap]{- \circ g}\ar[draw=none]{d}[name=X, anchor=center]{} &
+ \operatorname{Hom}_{\mathfrak{g}}(M, L') \rar[swap]{- \circ f} &
\operatorname{Hom}_{\mathfrak{g}}(N, L')
\ar[rounded corners,
- to path={ -- ([xshift=2ex]\tikztostart.east)
- |- (X.center) \tikztonodes
- -| ([xshift=-2ex]\tikztotarget.west)
- -- (\tikztotarget)}]{dll}[at end]{} \\ &
+ to path={ -- ([xshift=2ex]\tikztostart.east)
+ |- (X.center) \tikztonodes
+ -| ([xshift=-2ex]\tikztotarget.west)
+ -- (\tikztotarget)}]{dll}[at end]{} \\ &
\operatorname{Ext}^1(L, L')
- \arrow[r]\ar[draw=none]{d}[name=Y, anchor=center]{} &
- \operatorname{Ext}^1(M, L') \arrow[r] &
+ \rar\ar[draw=none]{d}[name=Y, anchor=center]{} &
+ \operatorname{Ext}^1(M, L') \rar &
\operatorname{Ext}^1(N, L')
\ar[rounded corners,
- to path={ -- ([xshift=2ex]\tikztostart.east)
- |- (Y.center) \tikztonodes
- -| ([xshift=-2ex]\tikztotarget.west)
- -- (\tikztotarget)}]{dll}[at end]{} \\ &
- \operatorname{Ext}^2(L, L') \arrow[r] &
- \operatorname{Ext}^2(M, L') \arrow[r] &
- \operatorname{Ext}^2(N, L') \arrow[r, dashed] &
+ to path={ -- ([xshift=2ex]\tikztostart.east)
+ |- (Y.center) \tikztonodes
+ -| ([xshift=-2ex]\tikztotarget.west)
+ -- (\tikztotarget)}]{dll}[at end]{} \\ &
+ \operatorname{Ext}^2(L, L') \rar &
+ \operatorname{Ext}^2(M, L') \rar &
+ \operatorname{Ext}^2(N, L') \rar[dashed] &
\cdots
\end{tikzcd}
\end{center}
@@ -457,7 +457,7 @@ basic}. In fact, all we need to know is\dots
isomorphism classes of short exact sequences
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} & N \arrow{r} & M \arrow{r} & L \arrow{r} & 0
+ 0 \rar & N \rar & M \rar & L \rar & 0
\end{tikzcd}
\end{center}
@@ -511,32 +511,33 @@ This implies\dots
Every short exact sequence of \(\mathfrak{g}\)-modules
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} & N \arrow{r}{f} & M \arrow{r}{g} & L \arrow{r} & 0
+ 0 \rar & N \rar{f} & M \rar{g} & L \rar & 0
\end{tikzcd}
\end{center}
induces a long exact sequence
\begin{center}
\begin{tikzcd}
- 0 \arrow[r] &
- N^{\mathfrak{g}} \arrow[r, "f"', swap]\ar[draw=none]{d}[name=X, anchor=center]{} &
- M^{\mathfrak{g}} \arrow[r, "g"', swap] &
+ 0 \rar &
+ N^{\mathfrak{g}} \rar[swap]{f}
+ \ar[draw=none]{d}[name=X, anchor=center]{} &
+ M^{\mathfrak{g}} \rar[swap]{g} &
L^{\mathfrak{g}}
\ar[rounded corners,
- to path={ -- ([xshift=2ex]\tikztostart.east)
- |- (X.center) \tikztonodes
- -| ([xshift=-2ex]\tikztotarget.west)
- -- (\tikztotarget)}]{dll}[at end]{} \\ &
- H^1(\mathfrak{g}, N) \arrow[r]\ar[draw=none]{d}[name=Y, anchor=center]{} &
- H^1(\mathfrak{g}, M) \arrow[r] &
+ to path={ -- ([xshift=2ex]\tikztostart.east)
+ |- (X.center) \tikztonodes
+ -| ([xshift=-2ex]\tikztotarget.west)
+ -- (\tikztotarget)}]{dll}[at end]{} \\ &
+ H^1(\mathfrak{g}, N) \rar\ar[draw=none]{d}[name=Y, anchor=center]{} &
+ H^1(\mathfrak{g}, M) \rar &
H^1(\mathfrak{g}, L)
\ar[rounded corners,
- to path={ -- ([xshift=2ex]\tikztostart.east)
- |- (Y.center) \tikztonodes
- -| ([xshift=-2ex]\tikztotarget.west)
- -- (\tikztotarget)}]{dll}[at end]{} \\ &
- H^2(\mathfrak{g}, N) \arrow[r] &
- H^2(\mathfrak{g}, M) \arrow[r] &
- H^2(\mathfrak{g}, L) \arrow[r, dashed] &
+ to path={ -- ([xshift=2ex]\tikztostart.east)
+ |- (Y.center) \tikztonodes
+ -| ([xshift=-2ex]\tikztotarget.west)
+ -- (\tikztotarget)}]{dll}[at end]{} \\ &
+ H^2(\mathfrak{g}, N) \rar &
+ H^2(\mathfrak{g}, M) \rar &
+ H^2(\mathfrak{g}, L) \rar[dashed] &
\cdots
\end{tikzcd}
\end{center}
@@ -546,19 +547,16 @@ This implies\dots
We have an isomorphism of sequences
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- \operatorname{Hom}_{\mathfrak{g}}(K, N)
- \arrow{r}{f \circ -} \arrow{d} &
- \operatorname{Hom}_{\mathfrak{g}}(K, M)
- \arrow{r}{g \circ -} \arrow{d} &
- \operatorname{Hom}_{\mathfrak{g}}(K, L) \arrow{r} \arrow{d} &
- H^1(\mathfrak{g}, N) \arrow[dashed]{r} \arrow[Rightarrow, no head]{d} &
- \cdots \\
- 0 \arrow{r} &
- N^{\mathfrak{g}} \arrow[swap]{r}{f} &
- M^{\mathfrak{g}} \arrow[swap]{r}{g} &
- L^{\mathfrak{g}} \arrow{r} &
- H^1(\mathfrak{g}, N) \arrow[dashed]{r} &
+ 0 \rar &
+ \operatorname{Hom}_{\mathfrak{g}}(K, N) \rar{f \circ -} \dar &
+ \operatorname{Hom}_{\mathfrak{g}}(K, M) \rar{g \circ -} \dar &
+ \operatorname{Hom}_{\mathfrak{g}}(K, L) \rar \dar &
+ H^1(\mathfrak{g}, N) \rar[dashed]\dar[Rightarrow, no head] & \cdots \\
+ 0 \rar &
+ N^{\mathfrak{g}} \rar[swap]{f} &
+ M^{\mathfrak{g}} \rar[swap]{g} &
+ L^{\mathfrak{g}} \rar &
+ H^1(\mathfrak{g}, N) \rar[dashed] &
\cdots
\end{tikzcd}
\end{center}
@@ -581,7 +579,7 @@ Explicitly\dots
L))\) and isomorphism classes of short exact sequences
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} & N \arrow{r} & M \arrow{r} & L \arrow{r} & 0
+ 0 \rar & N \rar & M \rar & L \rar & 0
\end{tikzcd}
\end{center}
\end{theorem}
@@ -590,11 +588,11 @@ For the readers already familiar with homological algebra: this correspondence
can be computed very concretely by considering a canonical acyclic resolution
\begin{center}
\begin{tikzcd}
- \cdots \arrow[dashed]{r} &
- \wedge^3 \mathfrak{g} \rar &
- \wedge^2 \mathfrak{g} \rar &
- \mathfrak{g} \rar &
- K \rar &
+ \cdots \rar[dashed] &
+ \wedge^3 \mathfrak{g} \rar &
+ \wedge^2 \mathfrak{g} \rar &
+ \mathfrak{g} \rar &
+ K \rar &
0
\end{tikzcd}
\end{center}
@@ -790,16 +788,16 @@ establish\dots
exact sequence
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} & N \arrow{r} & M \arrow{r} & \sfrac{M}{N} \arrow{r} & 0
+ 0 \rar & N \rar & M \rar & \sfrac{M}{N} \rar & 0
\end{tikzcd}
\end{center}
induces a long exact sequence of the form
\begin{center}
\begin{tikzcd}
- \cdots \arrow[dashed]{r} &
- H^1(\mathfrak{g}, N) \arrow{r} &
- H^1(\mathfrak{g}, M) \arrow{r} &
- H^1(\mathfrak{g}, \sfrac{M}{N}) \arrow[dashed]{r} &
+ \cdots \rar[dashed] &
+ H^1(\mathfrak{g}, N) \rar &
+ H^1(\mathfrak{g}, M) \rar &
+ H^1(\mathfrak{g}, \sfrac{M}{N}) \rar[dashed] &
\cdots
\end{tikzcd}
\end{center}
@@ -809,9 +807,7 @@ establish\dots
of
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- H^1(\mathfrak{g}, M) \arrow{r} &
- 0
+ 0 \rar & H^1(\mathfrak{g}, M) \rar & 0
\end{tikzcd}
\end{center}
then implies \(H^1(\mathfrak{g}, M) = 0\). Hence by induction in \(\dim V\)
@@ -830,7 +826,7 @@ We are now finally ready to prove\dots
Let
\begin{equation}\label{eq:generict-exact-sequence}
\begin{tikzcd}
- 0 \arrow{r} & N \arrow{r}{f} & M \arrow{r}{g} & L \arrow{r} & 0
+ 0 \rar & N \rar{f} & M \rar{g} & L \rar & 0
\end{tikzcd}
\end{equation}
be a short exact sequence of finite-dimensional \(\mathfrak{g}\)-modules. We
@@ -839,10 +835,11 @@ We are now finally ready to prove\dots
We have an exact sequence
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- \operatorname{Hom}(L, N) \arrow{r}{f \circ -} &
- \operatorname{Hom}(L, M) \arrow{r}{g \circ -} &
- \operatorname{Hom}(L, L) \arrow{r} & 0
+ 0 \rar &
+ \operatorname{Hom}(L, N) \rar{f \circ -} &
+ \operatorname{Hom}(L, M) \rar{g \circ -} &
+ \operatorname{Hom}(L, L) \rar &
+ 0
\end{tikzcd}
\end{center}
of vector spaces. Since all maps involved are \(\mathfrak{g}\)-homomorphisms,
@@ -850,18 +847,19 @@ We are now finally ready to prove\dots
long exact sequence
\begin{center}
\begin{tikzcd}
- 0 \arrow[r] &
- \operatorname{Hom}(L, N)^{\mathfrak{g}} \arrow[r, "f \circ -"', swap]\ar[draw=none]{d}[name=X, anchor=center]{} &
- \operatorname{Hom}(L, M)^{\mathfrak{g}} \arrow[r, "g \circ -"', swap] &
+ 0 \rar &
+ \operatorname{Hom}(L, N)^{\mathfrak{g}} \rar[swap]{f \circ -}
+ \ar[draw=none]{d}[name=X, anchor=center]{} &
+ \operatorname{Hom}(L, M)^{\mathfrak{g}} \rar[swap]{g \circ -} &
\operatorname{Hom}(L, L)^{\mathfrak{g}}
\ar[rounded corners,
- to path={ -- ([xshift=2ex]\tikztostart.east)
- |- (X.center) \tikztonodes
- -| ([xshift=-2ex]\tikztotarget.west)
- -- (\tikztotarget)}]{dll}[at end]{} \\ &
- H^1(\mathfrak{g}, \operatorname{Hom}(L, N)) \arrow[r] &
- H^1(\mathfrak{g}, \operatorname{Hom}(L, M)) \arrow[r] &
- H^1(\mathfrak{g}, \operatorname{Hom}(L, L)) \arrow[r, dashed] &
+ to path={ -- ([xshift=2ex]\tikztostart.east)
+ |- (X.center) \tikztonodes
+ -| ([xshift=-2ex]\tikztotarget.west)
+ -- (\tikztotarget)}]{dll}[at end]{} \\ &
+ H^1(\mathfrak{g}, \operatorname{Hom}(L, N)) \rar &
+ H^1(\mathfrak{g}, \operatorname{Hom}(L, M)) \rar &
+ H^1(\mathfrak{g}, \operatorname{Hom}(L, L)) \rar[dashed] &
\cdots
\end{tikzcd}
\end{center}
@@ -870,10 +868,10 @@ We are now finally ready to prove\dots
have an exact sequence
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- \operatorname{Hom}(L, N)^{\mathfrak{g}} \arrow{r}{f \circ -} &
- \operatorname{Hom}(L, M)^{\mathfrak{g}} \arrow{r}{g \circ -} &
- \operatorname{Hom}(L, L)^{\mathfrak{g}} \arrow{r} &
+ 0 \rar &
+ \operatorname{Hom}(L, N)^{\mathfrak{g}} \rar{f \circ -} &
+ \operatorname{Hom}(L, M)^{\mathfrak{g}} \rar{g \circ -} &
+ \operatorname{Hom}(L, L)^{\mathfrak{g}} \rar &
0
\end{tikzcd}
\end{center}
@@ -894,10 +892,10 @@ We are now finally ready to prove\dots
We thus have a short exact sequence
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- \operatorname{Hom}_{\mathfrak{g}}(L, N) \arrow{r}{f \circ -} &
- \operatorname{Hom}_{\mathfrak{g}}(L, M) \arrow{r}{g \circ -} &
- \operatorname{Hom}_{\mathfrak{g}}(L, L) \arrow{r} &
+ 0 \rar &
+ \operatorname{Hom}_{\mathfrak{g}}(L, N) \rar{f \circ -} &
+ \operatorname{Hom}_{\mathfrak{g}}(L, M) \rar{g \circ -} &
+ \operatorname{Hom}_{\mathfrak{g}}(L, L) \rar &
0
\end{tikzcd}
\end{center}
@@ -906,11 +904,7 @@ We are now finally ready to prove\dots
such that \(g \circ s : L \to L\) is the identity operator. In other words
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- N \arrow{r}{f} &
- M \arrow{r}{g} &
- L \arrow{r} \arrow[bend left]{l}{s} &
- 0
+ 0 \rar & N \rar{f} & M \rar{g} & L \rar \lar[bend left]{s} & 0
\end{tikzcd}
\end{center}
is a splitting of (\ref{eq:generict-exact-sequence}).
@@ -932,10 +926,10 @@ semisimple -- \(\mathfrak{g}\), to a certain extent, by considering the exact
sequence
\begin{center}
\begin{tikzcd}
- 0 \arrow{r} &
- \mathfrak{rad}(\mathfrak{g}) \arrow{r} &
- \mathfrak{g} \arrow{r} &
- \mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})} \arrow{r} &
+ 0 \rar &
+ \mathfrak{rad}(\mathfrak{g}) \rar &
+ \mathfrak{g} \rar &
+ \mfrac{\mathfrak{g}}{\mathfrak{rad}(\mathfrak{g})} \rar &
0
\end{tikzcd}
\end{center}
diff --git a/sections/mathieu.tex b/sections/mathieu.tex
@@ -94,13 +94,11 @@ to the case it holds. This brings us to the following definition.
\otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{M}{N}\) and the diagram
\begin{center}
\begin{tikzcd}
- M_\lambda \arrow{d} \arrow{r}{\pi} &
- \left(\mfrac{M}{N}\right)_\lambda \arrow{d} \\
+ M_\lambda \dar \rar {\pi} &
+ \left(\mfrac{M}{N}\right)_\lambda \dar \\
\mfrac{\mathcal{U}(\mathfrak{h})}{I_\lambda}
- \otimes_{\mathcal{U}(\mathfrak{h})} M
- \arrow[swap]{r}{\operatorname{id} \otimes \pi} &
- \mfrac{\mathcal{U}(\mathfrak{h})}{I_\lambda}
- \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{M}{N}
+ \otimes_{\mathcal{U}(\mathfrak{h})} M \rar [swap]{\operatorname{id} \otimes \pi} &
+ \mfrac{\mathcal{U}(\mathfrak{h})}{I_\lambda} \otimes_{\mathcal{U}(\mathfrak{h})} \mfrac{M}{N}
\end{tikzcd}
\end{center}
commutes, so that the projection \(M_\lambda \to
@@ -210,7 +208,8 @@ we can see that \(M\) has the natural structure of a
a reductive algebra.
\begin{center}
\begin{tikzcd}
- \mathfrak{p} \rar \dar & \mathfrak{gl}(M) \\
+ \mathfrak{p} \rar \dar &
+ \mathfrak{gl}(M) \\
\mfrac{\mathfrak{p}}{\mathfrak{nil}(\mathfrak{p})} \arrow[dotted]{ur} &
\end{tikzcd}
\end{center}
@@ -377,9 +376,9 @@ x^{-1}])\) we can give \(\varphi_\lambda K[x, x^{-1}]\) the structure of an
\(\mathfrak{sl}_2(K)\)-module. Diagrammatically, we have
\begin{center}
\begin{tikzcd}
- \mathcal{U}(\mathfrak{sl}_2(K)) \rar &
+ \mathcal{U}(\mathfrak{sl}_2(K)) \rar &
\operatorname{Diff}(K[x, x^{-1}]) \rar{\varphi_\lambda} &
- \operatorname{Diff}(K[x, x^{-1}]) \rar &
+ \operatorname{Diff}(K[x, x^{-1}]) \rar &
\operatorname{End}(K[x, x^{-1}])
\end{tikzcd},
\end{center}
@@ -774,10 +773,10 @@ deemed informative enough to be included in here, but see the proof of Lemma
follows from the commutativity of
\begin{center}
\begin{tikzcd}
- \mathcal{U}(\mathfrak{g})_0 \arrow{r} \arrow{d} &
- \mathcal{U}(\mathfrak{g})_0^* \\
- \operatorname{End}(\mathcal{M}_\lambda) \arrow{r}{\sim} &
- \operatorname{End}(\mathcal{M}_\lambda)^* \arrow{u}
+ \mathcal{U}(\mathfrak{g})_0 \rar \dar &
+ \mathcal{U}(\mathfrak{g})_0^* \\
+ \operatorname{End}(\mathcal{M}_\lambda) \rar{\sim} &
+ \operatorname{End}(\mathcal{M}_\lambda)^* \uar
\end{tikzcd},
\end{center}
where the map \(\mathcal{U}(\mathfrak{g})_0 \to
@@ -837,9 +836,9 @@ deemed informative enough to be included in here, but see the proof of Lemma
commutativity of
\begin{center}
\begin{tikzcd}
- V \arrow{r} \arrow{d} & V^* \\
- \operatorname{End}(\mathcal{M}_\lambda) \arrow{r}{\sim} &
- \operatorname{End}(\mathcal{M}_\lambda)^* \arrow{u}
+ V \rar \dar & V^* \\
+ \operatorname{End}(\mathcal{M}_\lambda) \rar{\sim} &
+ \operatorname{End}(\mathcal{M}_\lambda)^* \uar
\end{tikzcd}
\end{center}
then implies \(\operatorname{rank} B_\lambda\!\restriction_V = d^2\). In
@@ -849,9 +848,9 @@ deemed informative enough to be included in here, but see the proof of Lemma
\(V\), then the commutativity of
\begin{center}
\begin{tikzcd}
- V \arrow{r} \arrow{d} & V^* \\
- \mathcal{U}(\mathfrak{g})_0 \arrow{r} &
- \mathcal{U}(\mathfrak{g})_0^* \arrow{u}
+ V \rar \dar & V^* \\
+ \mathcal{U}(\mathfrak{g})_0 \rar &
+ \mathcal{U}(\mathfrak{g})_0^* \uar
\end{tikzcd}
\end{center}
implies \(\operatorname{rank} B_\lambda \ge d^2\), which goes to show
@@ -897,13 +896,13 @@ by translating between weight spaced using \(f\) and \(f^{-1}\) -- here
inverse of the action of \(f\) on \(K[x, x^{-1}]\).
\begin{center}
\begin{tikzcd}
- \cdots \arrow[bend left=60]{r}{f^{-1}}
- & K x^{-2} \arrow[bend left=60]{r}{f^{-1}} \arrow[bend left=60]{l}{f}
- & K x^{-1} \arrow[bend left=60]{r}{f^{-1}} \arrow[bend left=60]{l}{f}
- & K \arrow[bend left=60]{r}{f^{-1}} \arrow[bend left=60]{l}{f}
- & K x \arrow[bend left=60]{r}{f^{-1}} \arrow[bend left=60]{l}{f}
- & K x^2 \arrow[bend left=60]{r}{f^{-1}} \arrow[bend left=60]{l}{f}
- & \cdots \arrow[bend left=60]{l}{f}
+ \cdots \rar[bend left=60]{f^{-1}}
+ & K x^{-2} \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f}
+ & K x^{-1} \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f}
+ & K \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f}
+ & K x \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f}
+ & K x^2 \rar[bend left=60]{f^{-1}} \lar[bend left=60]{f}
+ & \cdots \lar[bend left=60]{f}
\end{tikzcd}
\end{center}
@@ -949,8 +948,8 @@ elements of certain subsets of \(A\) via a process known as
\emph{the localization map}.
\begin{center}
\begin{tikzcd}
- S^{-1} A \arrow[dotted]{rd} & \\
- A \arrow{u} \arrow[swap]{r}{f} & B
+ S^{-1} A \arrow[dotted]{rd} & \\
+ A \uar \rar[swap]{f} & B
\end{tikzcd}
\end{center}
\end{theorem}